

Welcome to ngc-learn’s documentation!

Introduction:

	Overview

	Installation

Tutorials:

	Lesson 1: The Nodes-and-Cables System

Walkthroughs:

	Walkthrough 1: Learning NGC Generative Models

	Walkthrough 2: Creating Custom NGC Predictive Coding Systems

	Walkthrough 3: Creating an NGC Classifier

	Walkthrough 4: Sparse Coding

	Walkthrough 5: Amortized Inference

	Walkthrough 6: Harmoniums and Contrastive Divergence

	Walkthrough 7: Spiking Neural Networks

Model Museum

	The Model Museum

	GNCN-t1 (Rao & Ballard, 1999)

	GNCN-t1-Sigma (Friston, 2008)

	GNCN-PDH (Ororbia & Kifer, 2020/2022)

	GNCN-t1-FFM (Whittington & Bogacz, 2017)

	GNCN-t1-SC (Olshausen & Field, 1996)

	Harmonium (Smolensky, 1986)

	SNN-BA (Samadi et al., 2017)

Modeling API

	Node

	Cable

	NGCGraph

	ProjectionGraph

Source API

	ngclearn
	ngclearn package
	Subpackages
	ngclearn.density package
	Submodules

	ngclearn.density.gmm module

	Module contents

	ngclearn.engine package
	Subpackages

	Submodules

	ngclearn.engine.ngc_graph module

	ngclearn.engine.proj_graph module

	Module contents

	ngclearn.generator package
	Subpackages

	Module contents

	ngclearn.museum package
	Submodules

	ngclearn.museum.gncn_pdh module

	ngclearn.museum.gncn_t1 module

	ngclearn.museum.gncn_t1_ffm module

	ngclearn.museum.gncn_t1_sc module

	ngclearn.museum.gncn_t1_sigma module

	ngclearn.museum.harmonium module

	ngclearn.museum.snn_ba module

	Module contents

	ngclearn.utils package
	Subpackages

	Submodules

	ngclearn.utils.config module

	ngclearn.utils.data_utils module

	ngclearn.utils.io_utils module

	ngclearn.utils.metric_utils module

	ngclearn.utils.stat_utils module

	ngclearn.utils.transform_utils module

	Module contents

	Module contents

Papers that use NGC-Learn

	List of Papers/Publications

Indices and tables

	Index

	Module Index

	Search Page

Overview

ngc-learn is a Python library for building, simulating, and analyzing arbitrary
predictive processing/coding models based on the neural generative
coding (NGC) computational framework as well as other neurobiologically-motivated/grounded
systems. This toolkit is built on top of Tensorflow 2 and is
distributed under the 3-Clause BSD license.

Advances made in research on artificial neural networks (ANNs) have led to many
breakthroughs in machine learning and beyond, resulting in the design of powerful
models that can categorize and forecast as well as agents that can play games and solve
complex problems. Behind these achievements is the backpropagation of errors
(or backprop) algorithm. Although elegant and powerful, a major long-standing
criticism of backprop has been its biological implausibility. In short, it is not
likely that the brain adjusts the synapses that connect the billions of neurons
that compose it in the way that backprop would prescribe.

Although ANNs are (loosely) inspired by our current understanding of the human brain,
the connections to the actual mechanisms that drive systems of natural neurons are
quite loose, at best. Although the question as to how the brain exactly conducts
credit assignment – or the process of determining the contribution of each
and every neuron to the system’s overall error on some task (the “blame game”) – is
still an open one, it would prove invaluable to have a flexible computational and software
framework that can facilitate the design and development of brain-inspired neural systems that
can also learn complex tasks. These tasks range from generative modeling to interacting and
manipulating dynamically-evolving environments. This would benefit researchers
in fields including, but not limited to, machine learning, (computational)
neuroscience, and cognitive science.

ngc-learn aims to fill the above need by concretely instantiating an important
theory in neuroscience known as predictive processing, positing that the brain
is largely a continual prediction engine, constantly hypothesizing the state of its
environment and updating its own internal mental model of it as data is gathered.
Moreover, prediction and correction happen at many levels or regions within the
brain – clusters or groups of neurons in one region attempt to predict the state
of neurons at another region, forming a complex, somewhat hierarchical structure
that includes neurons which attempt to predict actual sensory input. Neurons within
this system adjust their internal activity values (as well the strengths of the
synapses that wire to them) based on how different their predictions were from
observed signals.
Concretely, ngc-learn implements a general predictive processing framework known
as neural generative coding (NGC).

The overarching goal of ngc-learn is to provide researchers and engineers with:

	a modular design that allows for the flexible creation, simulation, and analysis of
neural systems fundamentally built and driven by predictive processing;

	a powerful, approachable tool, written by and maintained by researchers and
experimenters directly studying and working to advance predictive processing,
meant to lower the barriers to entry to this field of research;

	a “model museum” that captures the essence of fundamental and interesting
predictive processing models and algorithms throughout history, allowing for the
study of and experimentation with classical and modern ideas.

The ngc-learn software framework was originally developed in 2019 by the Neural Adaptive
Computing (NAC) laboratory in Rochester Institute of Technology meant as an internal
tool for predictive processing research (with earlier incarnations in the Scala
programming language, dating back to early 2017). It remains actively maintained
and used for predictive processing research in NAC (see ngc-learn’s mention/announcement
in this engineering blog post).
We warmly welcome community contributions to this project. For details please check out our
contributing guidelines [https://github.com/ago109/ngc-learn/blob/main/CONTRIBUTING.md].

Citation

Please cite ngc-learn’s source/core paper if you use this framework in your publications:

@article{Ororbia2022,
 author={Ororbia, Alexander and Kifer, Daniel},
 title={The neural coding framework for learning generative models},
 journal={Nature Communications},
 year={2022},
 month={Apr},
 day={19},
 volume={13},
 number={1},
 pages={2064},
 issn={2041-1723},
 doi={10.1038/s41467-022-29632-7},
 url={https://doi.org/10.1038/s41467-022-29632-7}
}

Installation

ngc-learn officially supports Linux on Python 3. It can be run with or
without a GPU.

Setup: Ensure that you have installed the following base dependencies in
your system. Note that this library was developed and tested on Ubuntu 18.04.
Specifically, ngc-learn requires:

	Python (>=3.7)

	Numpy (>=1.20.0)

	Tensorflow 2.0.0, specifically, tensorflow-gpu>=2.0.0

	scikit-learn (>=0.24.2) (needed for the demonstrations in examples/ as well as
ngclearn.density)

	matplotlib (>=3.4.3) (needed for the demonstrations in examples/)

Install from Source

	Clone the ngc-learn repository:

$ git clone https://github.com/ago109/ngc-learn.git
$ cd ngc-learn

	Install the base requirements (and a few extras for building the docs) with:

$ pip3 install -r requirements.txt

	Install the ngc-learn package via:

$ python setup.py install

If the installation was successful, you should see the following if you test
it against your Python interpreter, i.e., run the $ python command
and complete the following sequence of steps as depicted in the screenshot below:
[image: _images/test_ngclearn_install.png]

 Lesson 1: The Nodes-and-Cables System

Lesson 1: The Nodes-and-Cables System

In this tutorial, we will focus on working through the very basics of ngc-learn’s
nodes-and-cables system. Specifically, you will learn how various (mini-)circuits
are built in order to develop an intuition of how these fundamental
modeling blocks fit together and how, when they are put together in the right way,
you can simulate your own evolving dynamical neural systems.

We recommend that you create a directory labeled tutorials/ and a sub-directory
within labeled as lesson1/ for you to place the code/Python scripts that you will
write in throughout this lesson.

Theory: Cable Theory and Neural Compartments

At its core, part of ngc-learn’s core design is inspired by (neural)
cable theory ,
where neuronal units, which are arranged in complex connectivity structures,
are viewed as performing dendritic calculations (of varying complexity).
In essence, a particular neuron integrates information from different input signal
sources (for example, signals produced by other neurons), in often highly nonlinear
ways through a complex dendritic tree.

Although modeling a complete neuronal system through the lens of cable theory is
complex and intricate in of itself, ngc-learn is built with this direction in mind.
ngc-learn starts with with the idea a neuron (or a cluster of them) can be viewed
as a node, or Node (also see Node Model),
and each bundle of synapses that connect pairs of nodes can be viewed as a cable,
or Cable (also see Cable Model).

Each node has multiple, different (named) “compartments”, which are regions
or slots within the node that other nodes can deposit information/signals into.
These compartments allow a node to collect information from many different
connected/related nodes and then decide how to combine these different signals
in order calculate its own output activity (either in the form of a rate-coded
firing rate or binary spikes) using the integration logic defined within its
own specific step() function. When an NGC system, composed of many of these
nodes, is simulated over a period of time (processing some form of sensory input),
its underlying simulation object (the NGCGraph) calls the step() routine
of each constituent node within one discrete time step. The order in which the
node step() routines are called is governed by “execution cycles”, which are
defined by the experimenter at object initialization, for example, a user
might want all of the state nodes to first execute their internal step logic
before the error nodes do (which can be done by specifying two distinct cycles
in the order desired).

As a result, many nodes and cables result in an NGC system where each
node is itself, in general, a stateful computation even if we are processing
inherently non-temporal data such as static images.

Node and Cable Fundamentals

To start creating predictive processing models and other neurobiological neural
systems, we must first examine the fundamental building blocks you will need to
craft them.
At a high level, motivated by the theory described above, an NGC system is made
up of multiple nodes and cables where each node (or cluster/group of neurons)
in the system contains one or more compartments (or vectors of scalar numbers/signals)
and each cable transmits the information (vector of numbers) inside one compartment
within one node and transforms this information (potentially with synapses) and
finally deposits this transformed information into one single compartment of another node.
Understanding how nodes and cables relate to each other in ngc-learn is necessary
if one wants to build and simulate their own custom NGC system (for example, the
arbitrary 3-node one graphically depicted in the figure below).

	[image: ../_images/nodes_and_cables.png]

The Node

First, let us examine the node object itself.
A node (or Node) contains inside of it a cluster (or block) of neurons,
the number of which is controlled through the dim argument. We will, in this
tutorial lesson, examine two core node types within ngc-learn, the stateful
node (or SNode) and the error node
(ENode), although there are other node types
(such as convenience nodes like the FNode or spiking nodes).

Every node in ngc-learn has several compartments, which are made explicit
in each node’s documentation listed under “Compartments:” and the names of
which can be programmatically accessed through the node’s data member
.compartment_names. As mentioned in the last section, the signal values within
these compartments are often combined together according to the logic defined
within a node’s .step() simulation function. Furthermore, each node contains
two other data members of particular interest – the .connected_cables list
and the .constant_names list. The .constant_names contains fixed integer/scalar
coefficients/values that are also used within an node’s .step() logic, such
as biological constants derived from experimental data or user-set coefficients
that can be defined before simulation (like an integration time constant).
The .connected_cables is an (unordered) list of Cable objects that connect
to a particular node (one can iterate over this list and print out the names of
each cable if need be).
Each cable object, which we will discuss in more detail
later, has knowledge of the specific compartment within a given node it is to
deposit its information into and the node can easily query the name of this
compartment by accessing the cable’s data member .dest_comp.

Given the information above (with the aid of a few other internal book-keeping
data structures), a node, after its own .compile() routine has been executed
(which is done within an NGCGraph’s .compile() function call), will run
its own internal logic each time its .step() is called, continually integrating
information from its named compartments until the end of simulation time window.
While we will defer the exact details of how a .step() function is/should be
implemented for a subsequent tutorial lesson (which will aid developers
interested in contributing their own node types to ngc-learn), we can briefly
speak to the neural dynamics that occurs within .step() for the two nodes you
will work with in this lesson.

For a state node (SNode), as seen in its API,
we see that we have six compartments, which can be printed to I/O as in the
following code snippet/example (you can place it in a script named test_node.py):

import tensorflow as tf
import numpy as np
from ngclearn.engine.nodes.snode import SNode

a = SNode(name="a", dim=1, beta=1, leak=0.0, act_fx="identity")
print("Compartments: {}".format(a.compartment_names))

which will print the compartments internal to the above node a:

Compartments: ['dz_bu', 'dz_td', 'z', 'phi(z)', 'S(z)']

We will discuss the first four since the last one is a
specialized compartments only used in certain situations. The neural dynamics
of a state node, according to the first four compartments, is mathematically
depicted by the following partial differential equation:

\[
\frac{\partial \mathbf{z}}{\partial t} = -\gamma_{leak} \mathbf{z} +
(\mathbf{dz}_{td} + \mathbf{dz}_{bu} \odot \phi^\prime(\mathbf{z})) + \mbox{prior}(\mathbf{z})
\]

where we also formally represent the compartments dz_bu, dz_td, z, and phi(z)
as \(\mathbf{dz}_{bu}\), \(\mathbf{dz}_{td}\), \(\mathbf{z}\), and \(\phi(\mathbf{z})\),
respectively. This means that, if we use Euler integration to update the SNode’s compartment
\(\mathbf{z}\) (the default in ngc-learn), \(\mathbf{z}\) is updated each call to .step() as follows:

\[\begin{split}
\mathbf{z} &\leftarrow \zeta \mathbf{z} + \beta \frac{\partial \mathbf{z}}{\partial t} \\
\phi(\mathbf{z}) &= tanh(\mathbf{z}) \quad \mbox{// $\phi(\mathbf{z})$ can be any activation function}
\end{split}\]

and finally, after \(\mathbf{z}\) is updated, the state node will apply an element-wise
nonlinear function to \(\mathbf{z}\) to get \(\phi(\mathbf{z})\) (which is also the name of the
fourth compartment). Note that, in the above, we see several of the node’s
key constants defined, i.e. \(\beta\) or .beta (the strength of
perturbation applied to the node’s \(\mathbf{z}\) compartment), \(\gamma_{leak}\) or
.leak (the strength of the amount of decay applied to the \(\mathbf{z}\) compartment’s value),
and \(\zeta\) or .zeta (the amount of recurrent carry-over or how “stateful” the node is –
if one sets the constant .zeta = 0, the node becomes “stateless”).
\(\mbox{prior}(\mathbf{z})\) just refers to a distribution function that can be applied to
the \(\mathbf{z}\) compartment (see Walkthrough #4
for how this is used/set). We see by observing the above differential equation that a
state node is primarily defined by the value of its \(\mathbf{z}\) compartment and how
this compartment evolves over time is dictated by several factors including the
other two compartments \(\mathbf{dz}_{td}\) and \(\mathbf{dz}_{bu}\) (\(\phi^\prime(\mathbf{z})\)
refers to the first derivative of the SNode’s activation function \(\phi(\mathbf{z})\)
which can be turned off if desired). Note that multiple cables can feed into
\(\mathbf{dz}_{td}\) and \(\mathbf{dz}_{bu}\) (multiple deposits would be summed to
create a final value for either compartment).

As we can see in the above dynamics equations, a state node is simply a set of
rate-coded neurons that update their activity values according to a linear
combination of several “pressures”, notably the two key pressures \(\mathbf{dz}_{td}\)
(dz_td) and \(\mathbf{dz}_{bu}\) (dz_bu) which are practically identical except
that dz_bu is a pressure (optionally) weighted by the state node’s activation
function derivative \(\phi^\prime(\mathbf{z})\).
In a state node, when you wire other nodes to it, the .step() function will
specifically assume that signals are only ever being deposited into either dz_td or
dz_bu and NOT into \(\mathbf{z}\) (or z) and \(\phi(\mathbf{z})\) (or phi(z)), since
these last two compartments being evolved according to the equations presented earlier –
note that if you accidentally “wire” another node to the z or phi(z) compartments,
the SNode will simply ignore those since its .step() function only assumes
dz_td and dz_bu receive signals externally).

With the SNode above, you can already build a fully functional NGC system (for
example, a Harmonium as in Walkthrough #6),
however, there is one special node that we should also describe that will allow
you to more easily construct arbitrary predictive coding systems. This node is
known as the error node (ENode) and, as seen in its API,
it contains the following key compartments – pred_mu, pred_targ, z, phi(z),
and L or, formally, \(\mathbf{z}_\mu\), \(\mathbf{z}_{targ}\), \(\mathbf{z}\),
\(\phi(\mathbf{z})\), and \(L(\mathbf{z})\).
An error node is, in some sense, a convenience node because it is actually
mathematically a simplification of a state node that is evolved over a period
of time (it is a derived “fixed-point” of a pool of neurons that compute
mismatch signals evolved over several simulation time steps) and is
particularly useful when we want to simulate predictive coding systems faster (and
when one is not concerned with the exact biological implementation of neurons that
compute mismatch signals but only with their emergent behavior).

The error node dynamics are considerably simpler than that of a
state node (and, since they are driven by a derived fixed-point calculation,
they are stateless) and simply dictated by the following:

\[\begin{split}
\mathbf{z} &= \mathbf{z}_\mu - \mathbf{z}_{targ} \\
\phi(\mathbf{z}) &= identity(\mathbf{z}) \quad \mbox{// $\phi(\mathbf{z})$ can be any activation function} \\
L(\mathbf{z}) &= \sum_j (\mathbf{z} \odot \mathbf{z})^2_j \mbox{// Gaussian error neurons}
\end{split}\]

where \(\odot\) denotes elementwise multiplication and \(\mathbf{z}_{targ}\) (or
pred_targ) is the target signal (which can be accumulated from multiple
sources, i.e., if more than cable feeds into it, the set of deposits are summed
to create the final compartment value of pred_targ) and \(\mathbf{z}_\mu\) or (pred_mu) is the
expectation of the target signal (which can also be the sum of multiple deposits
from multiple cables/sources, i.e., multiple deposits from multiple cables
will be summed to calculate the final value of pred_mu). Note that for \(L(\mathbf{z})\)
(or L), we only depict one possible form that this compartment can take – the
Gaussian error neuron (which results in a local mean squared error loss) –
although are forms are possible (such as the Laplacian error neuron).

Below, we graphically depict the SNode (Left) and the ENode (Right):

	[image: ../_images/ngclearn_snode.png]

	[image: ../_images/ngclearn_enode.png]

notice that both diagrams indicate that multiple incoming signals (each indicated
by a curved diamond-head arrow) are summed within the cell body compartment they
are deposited into with the \(\Sigma\) symbol. In the SNode, the signals
dz_td and dz_bu are combined by addition, i.e., \(+\) (in the light blue box), whereas
in the ENode, the signals pred_targ and pred_mu are combined by subtraction,
i.e., \(-\) (in the red box) (they are contrasted to produce a mismatch/difference signal).

While we do not touch on it in this tutorial lesson, a user could write their
own custom nodes as well, making sure to subclass the Node class and then
define the dendritic calculation that they require within .step() and ensuring
that their custom node writes to the Node class’s core compartment data
structures so that ngc-learn can effectively simulate the node’s evolution over
time. Writing one’s own custom node will be the subject of an upcoming ngc-learn
tutorial lesson.

The Cable

Given the above understanding of a node, all that remains is to combine pairs of
them together with an object known as the cable.
Note that all cables fundamentally are responsible for one particular job:
taking the information in one compartment of one “source node”, doing something
to this information (such as transforming with a bundle of synapses via linear
algebra operations), and then depositing this information into the compartment
of another “destination node”.
To do this, there are two primary types of cables you should be familiar with: 1) the
simple cable SCable, and 2) the dense cable
DCable.
The simple cable simply transmits information directly from one node’s compartment
to another node’s compartment, simply multiplying the information from the source
node by its scalar data member .coeff (by default this is set to the value of 1).
The dense cable, in contrast, is a bit more involved as it takes the information
in one node’s compartment and applies some variant of a linear transformation
to this signal before depositing it into the compartment of another node (if you
wanted a cable to do something more complex than this, you could, as you can for
the Node class, write your own custom cable, but we leave this as the subject
for a future upcoming tutorial lesson).

Building cables is primarily done with the wire_to() function of the Node
class – using this function also makes the destination node aware
of the cable that connects to it. Let us say we have two state nodes a and b
and we wanted to wire them together such that the information in the z
compartment of a is transformed along a dense cable and finally deposited
into the dz_td compartment of state node b. This could be done with
the following code snippet (place the code in a script named test_cable.py):

import tensorflow as tf
import numpy as np
from ngclearn.engine.nodes.snode import SNode

create the initialization scheme (kernel) of the dense cable
init_kernels = {"A_init" : ("gaussian",0.025)}
dcable_cfg = {"type": "dense", "init_kernels" : init_kernels, "seed" : 69}

note that the dim of a does NOT have to equal that of b if using a dense cable
a = SNode(name="a", dim=5, beta=1, leak=0.0, act_fx="identity")
b = SNode(name="b", dim=5, beta=1, leak=0.0, act_fx="identity")
a_b = a.wire_to(b, src_comp="z", dest_comp="dz_td", cable_kernel=dcable_cfg) # wire a to b

print("Cable {} of type *{}* transmits from:".format(a_b.name, a_b.cable_type))
print("Node {}.{}".format(a_b.src_node.name, a_b.src_comp))
print(" to ")
print("Node {}.{}".format(a_b.dest_node.name, a_b.dest_comp))

which would print to your terminal the following:

Cable a-to-b_dense of type *dense* transmits from:
Node a.z
 to
Node b.dz_td

Graphically, the above 2-node circut would look like what is depicted in the
figure below.

	[image: ../_images/2n_circuit.png]

Note that cables can auto-generate their own .name based on the source and
destination node that they wire to (in the case above, the cable a_b would
auto-generate the name a-to-b_dense). If you want the cable that wires a to
b to be named something specific, you set the extra argument name in wire_to()
to the desired string and force that cable to take on the name you wish (make
sure you choose a unique name). Furthermore, note that a DCable has two
learnable synaptic objects you can trigger depending on how you initialize the
cable:

	a matrix A representing the bundle of synaptic connections that will
be used to transform the source node of the cable and relay this information to
the destination node of the cable, and

	a bias vector b representing the shift added to the transformed output signal
of the cable.

What, then, does the above a_b dense cable do mathematically? Let us label
z compartment of node a as \(\mathbf{z}^a\) and the dz_td of node b
as \(\mathbf{dz}^b_{td}\). Given this labeling, the dense cable will perform
the following transformation:

\[\begin{split}
\mathbf{s}_{out} = \mathbf{z}^a \cdot \mathbf{A}^{a_b} \\
\mathbf{dz}^b_{td} = \mathbf{dz}^b_{td} + \mathbf{s}_{out}
\end{split}\]

where \(\cdot\) denotes a matrix/vector multiplication and \(\mathbf{A}^{a_b}\) is the
matrix containing the synapses connecting the compartment z of node a to the
dz_td compartment of node b. If we had initalized the DCable earlier to have
a bias, like so:

init_kernels = {"A_init" : ("gaussian",0.025), "b_init" : ("zeros")}

then the cable a_b would perform the following:

\[\begin{split}
\mathbf{s}_{out} = \mathbf{z}^a \cdot \mathbf{A}^{a_b} + \mathbf{b}^{a_b} \\
\mathbf{dz}^b_{td} = \mathbf{dz}^b_{td} + \mathbf{s}_{out}
\end{split}\]

Notice that the last line in the above two equations also shows what each cable
will ultimately to node b – they add in their transformed signal \(\mathbf{s}_{out}\)
to its \(\mathbf{dz}^b_{td}\) compartment.

If you want to verify that the cable you wired from a to b appears
within node b’s .connected_cables data member, you can add/write a print
statement as follows:

print("Cables that connect to Node {}:".format(b.name))
for cable in b.connected_cables:
 print(" => Cable: {}".format(cable.name))

which would print to the terminal:

Cables that connect to Node b:
 => Cable: a-to-b_dense

Note that nodes a and b do not have to have the same .dim values if you
are wiring them together with a dense cable. In addition, cables in ngc-learn
are directional – if you wire node a to node b, this does NOT mean that
node b is wired to node a (you would have to call the wire_to() funciton
again and create such a wire if this relationship is desired).

If you wanted to wire information directly from node a to node b WITHOUT
transforming the information via synapses, you can use a simple cable but, in
order to do so, the .dim data member (the number of neurons) of a must be
equal to that of b. You could write the following code (in a script you
name test_cable2.py):

import tensorflow as tf
import numpy as np
from ngclearn.engine.nodes.snode import SNode

create the initialization scheme (kernel) of the simple cable
scable_cfg = {"type": "simple", "coeff": 1.0}

Note that you could do the exact same thing with a dense cable using
the two lines below but you would be wasting a matrix multiplication if so
init_kernels = {"A_init" : ("diagonal",1)}
dcable_cfg = {"type": "dense", "init_kernels" : init_kernels, "seed" : 69}

note that the dim of a MUST be equal to b if using a simple cable
a = SNode(name="a", dim=5, beta=1, leak=0.0, act_fx="identity")
b = SNode(name="b", dim=5, beta=1, leak=0.0, act_fx="identity")
a_b = a.wire_to(b, src_comp="z", dest_comp="dz_td", cable_kernel=scable_cfg) # wire a to b

print("Cable {} of type *{}* transmits from:".format(a_b.name, a_b.cable_type))
print("Node {}.{}".format(a_b.src_node.name, a_b.src_comp))
print(" to ")
print("Node {}.{}".format(a_b.dest_node.name, a_b.dest_comp))

which would print to your terminal the following:

Cable a-to-b_simple of type *simple* transmits from:
Node a.z
 to
Node b.dz_td

Wiring nodes with cables using the .wire_to() routine notably returns the
cable that it creates (in our code snippet this was stored in the variable a_b).
This is particularly useful if you need/want to set other properties of the generated
cable object such as local Hebbian synaptic update rules, constraints to be applied
to the cable’s synapses, or synaptic value decay.

Building Circuits with Nodes with Cables

Once you have created a set of nodes and wired them together in some meaningful
fashion, your circuit is now ready to be simulated.
To make the circuit function as a complete NGC dynamical system, you must place
your nodes into ngc-learn’s simulation object, i.e., the NGCGraph. This object
will, once you have initialized it and made it aware of the nodes you want to
simulate, run some basic checks for coherence, internally configure the computations
that will drive the simulation that can leverage Tensorflow 2 static graph
optimization (you can turn this off if you do not want this optimization to happen),
and trigger the compilation routines inherent to each node and cable.

Specifically, if you wanted to compile the simple circuit you created in the last
section into a simulated NGC graph, you would then need to write the following
(you could add the following lines of code to your test_cable.py or test_cable2.py
scripts if you like to test the compile routine):

from ngclearn.engine.ngc_graph import NGCGraph

circuit = NGCGraph()
circuit.set_cycle(nodes=[a,b]) # make the graph aware of nodes a and b, in that order
circuit.compile(batch_size=1)

where we see that the graph circuit is made aware of nodes a and b through
the call to .set_cycle() which takes in as argument a list of Node objects.
Notice that we do not have to explicitly tell the NGCGraph about the cable a_b
we created – the NGCGraph will automatically handle the cable a_b through
the .connected_cables data member of all nodes it is made aware. The
.compile() routine will desirably do most of the heavy-lifting without much
input from the user except for a few small arguments if desired. For example,
in the code snippet above, we set the batch_size argument directly (the default
for an NGCGraph if you do not set it is also 1), which is needed for the
default static graph optimization that the NGCGraph will set up after you call
.compile() – note this also means you must make sure that the (mini-)batch size
of all sensory inputs you provide to the NGCGraph are the of length batch_size
(since ngc-learn makes use of in-place memory operators to speed up simulation
and play nicely with Tensorflow’s static graph functionality).

If you do not wish to use the default static graph optimization and be able to
deal with variable-length mini-batches of data, then you can replace the above
call to .compile() by setting its use_graph_optim argument to False (which
has the trade-off that your simulations being slower).

Note that you can always “re-compile” an NGCGraph anytime you want. For example,
you wish to use the static graph optimization to speed up the training of your
NGCGraph circuit (since that is the most expensive part of simulating a stateful
neural system) but would like to reuse the trained graph on some new pool of
data samples with a different mini-batch size (or even, say, online, where you
feed in samples to the circuit one at a time).
You would simply write the code snippet exactly as we did earlier, run your
simulation of the training process, and then, after your code decides that
training is done, you could then simply re-compile your simulation object
to be dynamic (switching to Tensorflow eager execution mode) as follows:

circuit.compile(use_graph_optim=False) # re-compile "circuit" to work w/ dynamic batch sizes

and you can then present inputs to your simulation object of any batch size you wish.
Alternatively, if you still wanted the benefit of the speed offered by static graph
optimization but just want to change the batch size to something different than what
was used during training (say you have a test set you want to sample mini-batches
of 128 samples instead), then you would write the following line:

NOTE: you can also re-compile your circuit to become a system with the same synaptic
parameters but static-graph optimized for a different fixed batch size (w/o speed loss)
circuit.compile(batch_size=128) # <-- note all future batches of data must be length 128

re-compiling (as in the above two cases) provides some flexibility to the
experimenter/developer although a small setup cost is paid each the .compile()
routine is called.

Also, it is important to be aware that the NGCGraph itself internally maintains
several data structures that help it keep track of the simulated nodes/cables,
allow it to compute any desired synaptic updates, and ensure that the internal
dynamics interact properly with Tensorflow’s static graph optimization while
still providing inspectability for the experimenter among other activities.
One particular object that will be of interest to you, the experimenter, is the
.theta list, which is the implementation of the mathematical construct \(\Theta\)
often stated in statistical learning and applied mathematics that houses ALL of
the learnable parameters (currently it would be empty in our case above because
we have not set any learning rules as we will later).

Given the above NGCGraph, you have now built your first, very own
custom NGC system. All that remains is to learn how to use an NGC system to process
some data, which we will demonstrate in the next section.

Generating an NGCGraph Visualization

Currently, ngc-learn offers some basic support for generating a visualization
of the system architecture that you create with the nodes-and-cables system. This
functionality is built on top of the two Python packages networkx and pyviz
to provide the user/experimenter some interactive flexibility with modifying
the generated architecture/graph visualizations before saving to disk.

To generate a graphical visualization of your NGCGraph, such as one for the
2-node circuit you built in the last section, you would write the following code:

import ngclearn.utils.experimental.viz_graph_utils as viz

viz.visualize_graph(circuit) # generate the graph visual of

which will generate a graph/network visualization (after some minor manipulation
from the user) similar to the one below:

	[image: ../_images/2n_circuit_viz.png]

Notice that the node names we set earlier, e.g., a and b, are automatically
extracted by the graph visualizer and the cable names (normally auto-generated)
by the NGCGraph graph object are attached to the edges they correspond to.
Furthermore, observe that you can directly interact with and manipulate (through
clicking and dragging) the generated visualization to suit your purposes.
Note: we recommend experimenting with the physics solver option to the
forceAtlas2Based or repulsion variants for more complex NGC network graphs.

The visualization scheme according to ngc-learn dictates that non-learnable
cables are colored blue, dense cables are solid arcs, and that state nodes
are colored as as grey ellipses. See the end of this tutorial lesson for more
details on the graph color-coding scheme used by ngc-learn.

One important trick to cleaning up an NGCGraph’s visualization is to use the
short_name optional argument to the .wire_to() function. Specifically, setting
a short_name for a particular cable that wires together two nodes allows you
to assign “nicknames” to cables while preserving their original auto-generated
names (though you can also directly set the names yourself using the name
argument in the .wire_to() routine if you like, just ensure your name
choices are unique). For example, we could have created the cable a_b earlier
with a short_name like so:

a_b = a.wire_to(b, src_comp="z", dest_comp="dz_td", cable_kernel=scable_cfg, short_name="W1")

If you run the visualizer now but with the short_name we set above, you will
get the following output:

	[image: ../_images/2n_circuit_viz2.png]

where now W1 is used in place of the original a-to-b_dense auto-generated
name.

Simulating an NGC Circuit with Sensory Data

In this section, we will illustrate two ways in which one may have an NGCGraph
interact with sensory data patterns.
Let us start by building a simple 3-node circuit, i.e., the one
depicted in the figure below (only the relevant compartments in each node
that we will wire together are depicted).

	[image: ../_images/3n_circuit.png]

Create a Python file/script named circuit1.py and write the following to
create the header:

import tensorflow as tf
import numpy as np

import building blocks
from ngclearn.engine.nodes.snode import SNode
import simulation object
from ngclearn.engine.ngc_graph import NGCGraph

Now write the following code for your circuit:

integrate_cfg = {"integrate_type" : "euler", "use_dfx" : True}
a = SNode(name="a", dim=1, beta=1, leak=0.0, act_fx="identity",
 integrate_kernel=integrate_cfg)
b = SNode(name="b", dim=1, beta=1, leak=0.0, act_fx="identity",
 integrate_kernel=integrate_cfg)
c = SNode(name="c", dim=1, beta=1, leak=0.0, act_fx="identity",
 integrate_kernel=integrate_cfg)

init_kernels = {"A_init" : ("diagonal",1)}
dcable_cfg = {"type": "dense", "init_kernels" : init_kernels, "seed" : 69}
a_b = a.wire_to(b, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=dcable_cfg)
c_b = c.wire_to(b, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=dcable_cfg)

circuit = NGCGraph(K=5)
execute nodes in order: a, c, then b
circuit.set_cycle(nodes=[a,c,b])
circuit.compile(batch_size=1)

do something with the circuit above
a_val = tf.ones([1, circuit.getNode("a").dim]) # create sensory data point *a_val*
c_val = tf.ones([1, circuit.getNode("c").dim]) # create sensory data point *c_val*
readouts, _ = circuit.settle(
 clamped_vars=[("a","z",a_val), ("c","z",c_val)],
 readout_vars=[("b","phi(z)")]
)
b_val = readouts[0][2]
print(" => Value of b.phi(z) = {}".format(b_val.numpy()))
print(" Expected = [[10]]")
circuit.clear()

The above (fixed) circuit will simply take in the current values within the phi(z) compartment
of nodes a and c and combine them together (through addition) within the
dz_td compartment of node b. Specifically, the value within the phi(z) compartment
of a will be transformed with the dense cable a_b and deposited first into
dz_td of b and then the compartment phi(z) of c will be transformed by the
dense cable c_b and added to the current value of and deposited into the
dz_td compartment of b.
Notice that we set the graph to execute the nodes in a particular order:
a, c, b so that way we ensure that first the values within nodes a and c
are first computed at any time step followed by node b which will then take
the current compartment values it needs from a and c and aggregate them
to compute its new state.
Alternatively, you could write and set up the same exact computation by organizing
the node computation into two subsequent cycles as follows:

circuit = NGCGraph(K=5)
execute nodes in order: a, c, then b
circuit.set_cycle(nodes=[a,c])
circuit.set_cycle(nodes=[b])
circuit.compile(batch_size=1)

where the above code-snippet is more explicit and, internally within the NGCGraph
simulation object, means that a separate computation cycle will be created that must

wait on the first cycle (a then b) to be completed before it can then be executed
(note that the overall simulation needed for both would be the same when finally
run).

Now go ahead and run your circuit1.py (i.e., $ python circuit1.py) and you
should get the exact following output in your terminal:

=> Value of b.phi(z) = [[10.]]
 Expected = [[10.]]

The above output should make sense since we clamped to the phi(z) compartments
of nodes a and c vectors of ones, after we run the NGCGraph for K = 5
steps of simulation time within the call to .settle(), we should obtain a vector
with 10 inside of it for the phi(z) compartment of node b. This is because,
at each time step within the .settle() function, the dz_td compartment of
node b is computed according to the following equation:

\[\begin{split}
\frac{\partial \mathbf{z}^b}{\partial t} &= \phi(\mathbf{z}^a) \cdot \mathbf{A}^{a_b}
+ \phi(\mathbf{z}^c) \cdot \mathbf{A}^{c_b} \\
 &= 1 \cdot \mathbf{A}^{a_b} + 1 \cdot \mathbf{A}^{c_b} = 1 \cdot \mathbf{I} + 1 \cdot \mathbf{I} \\
 & = (1 \cdot 1) + (1 \cdot 1) = 2
\end{split}\]

where \(\mathbf{I}\) is the identity matrix (or diagonal matrix) of size (1,1) which is the
same as the scalar 1 (because we set the initialize of the A matrix within
cables a_b and c_b to be the diagonal matrix). This means that at any time
step, nodes a and b are combined ultimately depositing a scalar value of 2 into
node b’s dz_td compartment, which will then be added according to b’s
state dynamics:
\(\mathbf{z}^b \leftarrow \mathbf{z}^b + \beta (\mathbf{dz}^b_{bu} + \mathbf{dz}^b_{td}) = \mathbf{z}^b + \beta (0 + \mathbf{dz}^b_{td}) \).

If this calculation is repeated five times, as we have set the NGCGraph to do
via the argument K=5, then the circuit above is effectively repeatedly adding
2 to the z compartment of node b five times (2 * 5 = 10). Note that for node
b, phi(z) is identical to the value of z because we set the activation function
of node b to be \(\phi(\mathbf{z}) = \mathbf{z}\) or act_fx = identity (in fact, we have done this for all three
nodes in this example).

Now, let us slightly modify the above 3-node circuit code to go one step below the
application programming interface (API) of the .settle() and write our own
explicit step-by-step simulation so that way we can examine the value of the z and
phi(z) compartments of node b to prove that we are indeed accumulating a value
of 2 each time step.
To write a low-level custom simulation loop that does the same thing as the code
snippet we wrote earlier, you could replace the call to .settle() with the
following code instead:

... same initialization code as before ...

do something with the circuit above
a_val = tf.ones([1, circuit.getNode("a").dim])
c_val = tf.ones([1, circuit.getNode("c").dim])

circuit.clamp([("a","z",a_val), ("c","z",c_val)])
circuit.set_to_resting_state()
for k in range(K):
 values, _ = circuit.step(calc_delta=False)
 circuit.parse_node_values(values)
 b_val = circuit.extract("b","z")
 print(" t({}) => Value of b.phi(z) = {}".format(k, b_val.numpy()))
print(" Expected = [[10.]]")
circuit.clear()

which will now print out to the terminal:

t(0) => Value of b.phi(z) = [[2.]]
t(1) => Value of b.phi(z) = [[4.]]
t(2) => Value of b.phi(z) = [[6.]]
t(3) => Value of b.phi(z) = [[8.]]
t(4) => Value of b.phi(z) = [[10.]]
 Expected = [[10.]]

showing us that, indeed, this circuit is incrementing the current value of the
z compartment by 2 each time step. The advantage to the above form of
simulating the stimulus window for the 3-node instead of using .settle() is that
one can now explicitly simulate the NGC system online if needed. This lower-level
way of simulating an NGC system would be desirable for very long simulation windows
where events might happen that interrupt or alter the settling process.

One final item to notice is that, in all of the code-snippets of this section, after
the NGCGraph has been simulated (either through .settle() or online via .step()),
we call the simulation objects .clear() routine. This is absolutely critical to
do after you simulate your NGC system for a fixed window of time IF you do not
want the current values of its internal nodes to carry over to the next time that
you simulate the system with .settle() or .step(). Since an NGC system is
stateful, if you expect its internal neural activities to have gone back to their
resting states (typically zero vectors) before processing a new pattern or batch
of data, then you must make sure that you call .clear().
A typical design pattern for an NGC system would something like:

... initialize the circuit and your optimizer *opt* earlier ...

after sampling some data, a typical process loop would be:
readouts, delta = circuit.settle(...) # conduct iterative inference
opt.apply_gradients(zip(delta, circuit.theta)) # update synapses
circuit.clear() # set all nodes in system back to their resting states

Evolving a Circuit over Time

Shared/Linked Cables

While cables are intended to be unique in that they instantiate a particular
bundle of synapses that relay the information from one node to another, it is
sometimes desirable to allow two or more cables to reuse the exact same synapse
(pointing to the same spot in memory – in other words, they make use of a shallow
copy of the synapses). This can also be useful if one needs to reduce the memory
footprint of their NGC system, e.g., for CPUs/GPUs with limited memory.
To facilitate sharing, you will need to use the mirror_path_kernel argument
of the wire_to() function you used earlier (in place of the cable_kernel
argument). This argument takes in a 2-tuple where the first argument is the
literal cable object you want to share parameters with and the second argument
is a string code/flag that tells ngc-learn which parameters (and how) to share.

In ngc-learn, one can make two cables “share” a bundle of synapses, and even bias
parameters, as follows (create a file called circuit2.py to place the
following code into):

import tensorflow as tf
import numpy as np

import building blocks
from ngclearn.engine.nodes.snode import SNode
import simulation object
from ngclearn.engine.ngc_graph import NGCGraph

create some nodes
a = SNode(name="a", dim=1, beta=1, leak=0.0, act_fx="identity")
b = SNode(name="b", dim=1, beta=1, leak=0.0, act_fx="identity")
x = SNode(name="x", dim=1, beta=1, leak=0.0, act_fx="identity")
y = SNode(name="y", dim=1, beta=1, leak=0.0, act_fx="identity")

init_kernels = {"A_init" : ("gaussian",0.1)}
dcable_cfg = {"type": "dense", "init_kernels" : init_kernels, "seed" : 111}

a_b = a.wire_to(b, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=dcable_cfg)
make cable *x_y* reuse the *A* matrix contained in cable *a_b*
x_y = x.wire_to(y, src_comp="phi(z)", dest_comp="dz_td", mirror_path_kernel=(a_b,"A"))

print("Cable {} w/ synapse A = {}".format(a_b.name, a_b.params["A"].numpy()))
print("Cable {} w/ synapse A = {}".format(x_y.name, x_y.params["A"].numpy()))

and you should see printed to your terminal:

Cable a-to-b_dense w/ synapse A = [[0.1918097]]
Cable x-to-y_dense w/ synapse A = [[0.1918097]]

where we see that the cables a_b and x_y do indeed have the exact same
synaptic matrix of size 1 x 1 even though the cables themselves are completely
different and even connect completely different nodes (note that you would need
to make sure the .dim of node x is identical to node a and that the .dim
of node y is the same as node b, otherwise, you will get a shaping error
when the cable is later simulated).

There are other ways to share/point to synapses besides the direct way above.
For example, the code below will force cable b_a to reuse the transpose of
the A synaptic matrix of cable a_b, as indicated by the second code/flag A^T
input to the mirror_path_kernel argument:

a_b = a.wire_to(b, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=dcable_cfg)
make cable *b_a* that reuses the transpose of the *A* matrix contained in cable *a_b*
b_a = b.wire_to(a, src_comp="phi(z)", dest_comp="dz_td", mirror_path_kernel=(a_b,"A^T"))

Other useful codes for the mirror_path_kernel argument include:
A+b which shares the A matrix and bias b of the target cable and
-A^T which shares the negative transpose of matrix A of the target cable.

Synaptic Update Rules

A key element of an NGC system is its ability to evolve with time and learn
from the data patterns it processes by updating its synaptic weights.
To update the synaptic bundles (and/or biases) inside the cables you use to
wire together nodes, you will need to also define corresponding learning rules.
Currently, ngc-learn assumes that synapses are adjusted through locally-defined
multi-factor Hebbian rules.

To configure a cable, particularly a dense cable, to utilize an update rule,
you need to specify the following with the set_update_rule() routine:

a_b = a.wire_to(b, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=dcable_cfg)
a_b.set_update_rule(preact=(a,"phi(z)"), postact=(b,"phi(z)"), param=["A"])

where we must define at least three arguments:

	the pre-activation term preact which must be a 2-tuple containing the
pre-activation node object and a string stating the compartment that we want
to extract a vector signal from,

	the post-activation term postact defined exactly the same as the pre-activation
term, and

	a list of strings param stating the synaptic parameters we want the update rule
to affect.
The code-snippet above will tell ngc-learn that when cable a_b is updated, we
would like to take the (matrix) product of node a’s phi(z) compartment and
node b’s phi(z) compartment and specifically adjust matrix A within the cable.

If cable a_b also contained a bias, we would specify the rule as follows:

a_b = a.wire_to(b, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=dcable_cfg)
a_b.set_update_rule(preact=(a,"phi(z)"), postact=(b,"phi(z)"), param=["A", "b"])

and ngc-learn will intelligently realize that synaptic vector b of cable a_b
will be updated using only the post-activation term postact (since it is a
vector and not a matrix like A).

Using the .set_update_rule() function on each cable that you would like to evolve
or be updated given data is all that you need to do to set up local learning. The
NGCGraph will automatically become aware of the valid cables linking
nodes that are learnable and, internally, call those cables’ update rules to
compute the correct synaptic adjustments. In particular, whenever you call
.settle() on an NGCGraph, the simulation object
will actually compute ALL of the synaptic adjustments at the end of the simulation
window and store them into a list delta and return them to you.

For example, you want to compute the Hebbian update for the cable a_b earlier
(that you wrote for circuit2.py) given a data point containing the value of
one (create a new file and write the code below into circuit3.py):

import tensorflow as tf
import numpy as np

from ngclearn.engine.nodes.snode import SNode # import building blocks
from ngclearn.engine.ngc_graph import NGCGraph # import simulation object

create the initialization scheme (kernel) of the dense cable
init_kernels = {"A_init" : ("gaussian",0.1)}
dcable_cfg = {"type": "dense", "init_kernels" : init_kernels, "seed" : 111}

a = SNode(name="a", dim=1, beta=1, leak=0.0, act_fx="identity")
b = SNode(name="b", dim=1, beta=1, leak=0.0, act_fx="identity")
a_b = a.wire_to(b, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=dcable_cfg)
a_b.set_update_rule(preact=(a,"phi(z)"), postact=(b,"phi(z)"), param=["A"])

print("Cable {} w/ synapse A = {}".format(a_b.name, a_b.params["A"].numpy()))

circuit = NGCGraph()
execute nodes in order: a, c, then b
circuit.set_cycle(nodes=[a,b])
circuit.compile(batch_size=1)

opt = tf.keras.optimizers.SGD(0.01)

do something with the circuit above
a_val = tf.ones([1, circuit.getNode("a").dim]) # create sensory data point *a_val*
readouts, delta = circuit.settle(
 clamped_vars=[("a","z",a_val)],
 readout_vars=[("b","phi(z)")]
)
opt.apply_gradients(zip(delta, circuit.theta))
circuit.clear()

print("Update to cable {} is: {}".format(a_b.name, delta[0].numpy()))

which would print to your terminal:

Update to cable a-to-b_dense is: [[-0.9590485]]

Notice that we have demonstrated how ngc-learn interacts with Tensorflow 2
optimizers by simply giving the returned delta list and the circuit’s internal
.theta list to the optimizer which will then physically adjust the values of
synaptic bundles themselves for you. NOTE that the order of Hebbian updates will be
returned in the exact same order as the learnable parameters that .theta points to.

The above NGC system is, of course, rather naive as we would effectively be calculating
and update the single synapses that connects nodes a and b, and, since this
use of the update rule is classical Hebbian, the value of the synapse inside of A
of cable a_b would grow indefinitely.
In the next section, we will craft a more interesting circuit that uses what you
learned about with respect cables and nodes, including the error node ENode.

Constructing a Convergent 5-Node Circuit

As our final exercise for this tutorial, let us build a 5-node circuit that
attempts to learn how to converge to a state such that a five-dimensional node a
and a six-dimensional node b each generate three-dimensional output values

that are nearly identical. In other words, we want node a to get good at
predicting the output of node b and node b to get good at predicting the
output of node a. Furthermore, node b’s z compartment will always be clamped
to a vector of ones.
To measure the mismatch between these two nodes’ predictions, we will introduce
the fifth and final node as a three-dimensional error node tasked with
computing how far off the two sources nodes are from each other.

We illustrate the 5-node circuit in the figure below. The relevant compartments
that we will be wiring together are shown as different-colored circles (and the
legend maps the color to the compartment name).

	[image: ../_images/5n_circuit.png]

To build this circuit, create a file called circuit4.py and write the header:

import tensorflow as tf
import numpy as np

import building blocks
from ngclearn.engine.nodes.enode import ENode
from ngclearn.engine.nodes.snode import SNode
import simulation object
from ngclearn.engine.ngc_graph import NGCGraph

and then go ahead and create the 5-node circuit we described as follows:

create the initialization scheme (kernel) of the dense cable
init_kernels = {"A_init" : ("gaussian",0.1)}
dcable_cfg = {"type": "dense", "init_kernels" : init_kernels, "seed" : 111} # dense cable
scable_cfg = {"type": "simple", "coeff": 1.0} # identity cable

a_dim = 5
e_dim = 3
b_dim = 6

Define node a
a = SNode(name="a", dim=a_dim, beta=1, leak=0.0, act_fx="identity")
Define node a_mu
a_mu = SNode(name="a_mu", dim=e_dim, beta=1, zeta=0, leak=0.0, act_fx="identity")
Define error node e
e = ENode(name="e", dim=e_dim)
Define node b
b = SNode(name="b", dim=b_dim, beta=1, leak=0.0, act_fx="identity")
Define node b_mu
b_mu = SNode(name="b_mu", dim=e_dim, beta=1, zeta=0, leak=0.0, act_fx="identity")

wire a to a_mu
a_amu = a.wire_to(a_mu, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=dcable_cfg)
a_amu.set_update_rule(preact=(a,"phi(z)"), postact=(e,"phi(z)"), param=["A"])
wire a_mu to e
amu_e = a_mu.wire_to(e, src_comp="phi(z)", dest_comp="pred_mu", cable_kernel=scable_cfg)

wire b to b_mu
b_bmu = b.wire_to(b_mu, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=dcable_cfg)
b_bmu.set_update_rule(preact=(b,"phi(z)"), postact=(e,"phi(z)"), param=["A"])
wire b_mu to e
bmu_e = b_mu.wire_to(e, src_comp="phi(z)", dest_comp="pred_targ", cable_kernel=scable_cfg)

wire e back to a
e_a = e.wire_to(a, src_comp="phi(z)", dest_comp="dz_bu", mirror_path_kernel=(a_amu,"A^T"))

wire e back to b
e_b = e.wire_to(b, src_comp="phi(z)", dest_comp="dz_bu", mirror_path_kernel=(b_bmu,"A^T"))

circuit = NGCGraph()
execute nodes in order: a, c, then b
circuit.set_cycle(nodes=[a, a_mu, b, b_mu])
circuit.set_cycle(nodes=[e])
circuit.set_learning_order([b_bmu, a_amu]) # enforces order - b_bmu then a_amu
circuit.compile(batch_size=1)

opt = tf.keras.optimizers.SGD(0.05)

and then, given the 5-node graph you crafted and compiled above, you can
now write a simple training loop to simulate as in below:

n_iter = 60 # number of overall optimization steps to take

b_val = tf.ones([1, circuit.getNode("b").dim]) # create sensory data point *b_val*
print("---- Simulating Circuit Evolution ----")
for t in range(n_iter):
 readouts, delta = circuit.settle(
 clamped_vars=[("b", "z",b_val)],
 readout_vars=[("e", "L")]
)
 e_val = readouts[0][2]
 if t > 0:
 print("\r{} => Value of e.L = {}".format(t, e_val.numpy()),end="")
 else:
 print("{} => Value of e.L = {}".format(t, e_val.numpy()))
 opt.apply_gradients(zip(delta, circuit.theta))
 circuit.clear()
print()

print("---- Final Results ----")
get final values
readouts, delta = circuit.settle(
 clamped_vars=[("b", "z",b_val)],
 readout_vars=[("e", "pred_mu"),("e", "pred_targ")],
 calc_delta=False # turn off update computation
)
prediction = readouts[0][2].numpy()
target = readouts[1][2].numpy()
print("Prediction: {}".format(prediction))
print(" Target: {}".format(target))
circuit.clear()

Once you have written circuit4.py, you can execute it from the command line
as $ python circuit4.py which should print to your terminal something similar to:

---- Simulating Circuit Evolution ----
0 => Value of e.L = [[0.03118673]]
59 => Value of e.L = [[3.9547285e-05]]
---- Final Results ----
Prediction: [[-2.2072585 -1.1418786 0.68785524]]
 Target: [[-2.2125444 -1.1444474 0.6895305]]

As you can see, the loss represented by the error node e (specifically, the
value stored in its loss L compartment), starts at greater than 0.03 and
then decreases over the sixty simulated training iterations to nearly zero
(0.00003954), and, as we can see in the comparison between the prediction
from node a against the target produced by node b, the values are quite close.
This indicates that our small 5-node circuit has converged to an equilibrium point
where node a and node b are capable of matching each other (assuming that
b’s z compartment will always be clamped to a vector of ones). Furthermore,
we see that we have crafted a feedback loop via cable e_a, which transmits
the error information contains inside of node e back to the dz_bu compartment
of node a, which, as we recall from the earlier part of this tutorial, is used
in node a’s state update equation. (Feedback loop e_b does something similar
to e_a, however, since we force the z compartment of b to always be a
specific value, this loop ends up being useful in this example).

With the completion of the above example, you have now gone through the process
of crafting your own custom NGC circuit with ngc-learn’s nodes-and-cables system.
Given this knowledge, you are ready to design and simulate your own predictive
processing neural systems based on the NGC computational framework. For examples
of how nodes and cables are used to build various classical and modern-day models,
check out the Model Museum (including the
pre-designed agents in the ngc-learn repo ngclearn/museum/) and the walk-throughs.

Knowing the Utility Functions of an NGCGraph

Although you have learned of and how to assemble the key elements in ngc-learn
needed to construct NGC circuits, there are a few useful utility functions that
are provided once you construct the NGCGraph simulation object. In this
closing section, we will briefly discuss each of these and briefly illustrate
their use (and review key ones that we covered earlier).

Compiling and Re-Compiling Your Simulation Object

As discussed earlier in this tutorial lesson, the .compile() is one of the
most important functions to call after you have constructed your NGCGraph as it
will set up the crucial internal bookkeeping and checks to ensure that your
simulated NGC system works correctly with static graph optimization and is
properly analyzable.

Normally, just calling the .compile() function after you initialize the
NGCGraph constructor is sufficient so long as you either set its batch_size
argument to the batch size you will be training with (and you must ensure
that your data is presented to your graph in batch sizes with that exact
same length each time, otherwise the NGCGraph will throw a memory error). Note
that you can also set the batch size your graph expects in the constructor itself,
like so NGCGraph(K=10, batch_size=128).

If you do not wish for ngc-learn to use static graph optimization, you can always
turn this off by setting the use_graph_optim to False in the .compile() function,
which will allow you to use variable-length batch sizes (and not force you to
specify the batch_size in the compile routine or in the NGCGraph constructor)
but this will come at the cost of slower simulation time especially if you will
be evolving the synapses over time (only in the case of pure online learning might
turning off the static graph optimization be useful).
However, you can, as was discussed earlier, always “re-compile” your simulation
object if, for example, you will be training with mini-batches of one length
and then testing with mini-batches of another length. Re-compiling is simple and
not too expensive to do if done sparingly – all you need to do is call
.compile() again and choose a new batch_size to give it as an argument.

One final note about the .compile() routine is that it actually returns a
dictionary of dictionaries that contains/organizes the core specifications
of your NGCGraph. You can print this dictionary out if you like and examine
that the various nodes and cables state the various key properties you expect them
to aid in debugging. Future plans for ngc-learn will be to leverage this
simulation properties dictionary to aid in auto-generated visualization to
help in creating architecture figures and possibly information-flow diagrams
(we would also like to mention here that we welcome
community contributions [https://github.com/ago109/ngc-learn/blob/main/CONTRIBUTING.md]
with respect to visualization and system analysis if you are interested in helping
with this particular effort).

Clearing the State of Your Simulator

Another core routine that you learned about in this tutorial is the .clear()
function. This is a critical function to call whenever you want to completely
wipe out the state of your NGCGraph simulation object. Wiping graph state is
something you will likely want to do quite often in your code. For example,
a typical design pattern for simulating an NGC system after you sample a batch of
training data points is to: 1) first call its .settle() function, 2) do something
with the readout variables you asked it to return (and maybe extract some other
items from your graph), 3) update the system’s synaptic weights (as housed in
its .theta construct) using an external optimization algorithm like stochastic
gradient descent, 4) apply/enforce constraints, and 5) clear/wipe the graph state.

There are no arguments to .clear() but you should be aware that it does wipe
the state of your graph thoroughly – this also means that, after clearing, using
a getter function .extract() (discussed in the next section) becomes meaningless
the internal bookkeeping structures that your graph maintains get set to their
default (“empty”) states. Note that clearing the graph state is NOT the same
as setting nodes exactly to their resting state – node resting states are actually
set with a call to .set_to_resting_state() and this is actually done for you
every time you call .settle() (unless you tell your graph not to start at a
resting state by setting the cold_start flag argument to False).

Note that a use-case where you might not want to use the .clear() function
is if you are simulating an NGC system over one long, single window of time (for
example, a sensory data stream). In this scenario, using .clear() would be
against the processing task as the neural system should be aware of its previous
nodal compartment activities after the last call to .settle() (you would want
to also set cold_start to False in this situation). We remark that a better
alternative to using .settle() for streaming data applications is to, like we
did early in this tutorial, work with the lower-level API of your NGCGraph and
just use its .step() routine which exactly simulates one discrete step of
time of your graph. This would allow you to set up “events” such as when you want
.step() to return updates to synapses (by setting the calc_delta argument to True
if you do and False otherwise) and when you want node compartments to go to
their actual resting states with a call to .set_to_resting_state().
We caution the user that leveraging the lower-level online
functionality of an NGCGraph does require some degree of comfort with how
ngc-learn operates and care should be taken to check that your system is evolving
in the way that you expect (working with the online functionality of an NGC
system will be the subject of a future advanced lesson). While it offers flexibility,
the .step() function also assumes that the experimenter will properly set
the other functions that .settle() normally takes care of automatically, such
as .set_to_resting_state(), clamping, and injecting compartment values.

Setting the Order of Synaptic Adjustments

Normally, when you set update rules for cables that you would like to evolve
with time, your NGCGraph will determine its own order in which the calculated
adjustments appear in the delta object (returned from .settle()) as well as
the order in which learnable parameters appear in the .theta data member.
If you wanted the order of the cables to appear in a certain way in .theta
(which would affect the order of delta), you can use the .set_learning_order()
function before you call the .compile() routine for your NGCGraph.

This was actually done earlier in the last section, where you set the order
of the cable parameters in .theta to be cable b_bmu followed by cable a_amu
as in the code snippet reproduced from earlier:

circuit.set_learning_order([b_bmu, a_amu]) # enforces order - b_bmu then a_amu

Setting the order of learnable cables directly affects what is returned by
functions such as .settle() and .step() since, internally, the NGCGraph will
organize itself to ensure that the order of updates in delta exactly match
the order of learnable parameters stored in .theta. (Note: if a cable has a
synaptic matrix A and bias b, then always the order will be that cable’s
A followed by b in .theta.)

Extracting Signals and Properties: Getter Functions

Two of the most important “getter” functions you will want to be familiar with
when dealing with NGCGraph’s are .extract() and .getNode().

The .extract() function is useful when you want to access particular values of your
NGC system at a particular instant. For example, let us say that you want to
retrieve and inspect the value of the z compartment of the node a in the
5-node circuit you built in the last section right. You would then utilize the
.extract() methods as follows:

node_value = circuit.extract("a", "z")
print(" -> Inspecting value of Node a.z = {}".format(node_value.numpy()))

which would print to your terminal:

 -> Inspecting value of Node a.z = [[-0.9275531 2.341278 0.2365013 1.2464949 0.76036114]]

NOTE: it is meaningless to call .extract() in the following two cases:

	after you call .clear(), as .clear() will completely wipe the state of
your NGCGraph, and

	not before you have simulated used your NGCGraph for any amount of time
(if you have never simulated the graph, then your graph has no signals of any
meaning since it has never interact with data or an environment).
If you call .extract() in cases like those above, it will simply return None.

The .getNode() is useful if you have already compiled your NGCGraph simulation
object and want to retrieve properties related to a particular node in this graph.
For example, let us say that you want to determine the dimensionality of the
e node in your 5-node circuit of the last section. To do this, you would
write the following code:

node = circuit.getNode("e")
print(" -> The dimensionality of Node e is {}".format(node.dim))

which would print to your terminal:

 -> The dimensionality of Node e is 3

The .getNode() method will return the full Node object of the same exact
name you input as argument. With this object, you can query and inspect any of
its internal data members, such as the .connected_cables as we did earlier in
this lesson.

Clamping and Injecting Signals: Setter Functions

The two “setter” functions that will you find most useful when working with
the NGCGraph are .clamp() and .inject(). Clamping and injecting, which
both work very similarly, allow you to force certain compartments in certain
nodes of your choosing to take on certain values before you simulate the NGCGraph
for a certain period of time. While both of these initially place values into
compartments, there is a subtle yet important difference in the effect each has
on the graph over time. Desirably, both of these functions take in a list of
arguments, allowing you clamp or inject many items at one time if needed.

In the event that you want a particular node’s compartment to take on a specific
set of values and remain fixed at these values throughout the duration of
a simulation time window, then you want to use .clamp(). In our 5-node circuit
earlier, we in fact did this in our particular call to .settle() (which, internally,
actually makes a call to .clamp() for you if you provide anything to the clamped_vars
argument), but you could, alternatively, use the clamping function explicitly if you
need to as follows:

b_val = tf.ones([1, circuit.getNode("b").dim])
circuit.clamp([("b", "z", b_val)])
readouts, delta = circuit.settle(
 readout_vars=[("e", "pred_mu"),("e", "pred_targ")],
 calc_delta=False # turn off update computation
)

node_value = circuit.extract("b", "z")
print(" -> Inspecting value of Node b.z = {}".format(node_value.numpy()))

which will, through each step of simulation conducted within the .settle()
force the z compartment of node b to ALWAYS remain at the value of b_val
(this vector of ones will persist throughout the simulation time window).
The result of this code snippet prints to terminal the following:

 -> Inspecting value of Node b.z = [[1. 1. 1. 1. 1. 1.]]

This is as we would expect – we literally clamped a vector of six ones to z of
node b and would expect to observe that this is still the case at the end of
simulation.

If, in contrast, you only want to initialize a particular node’s compartment
to start at a specific value but not necessarily remain at this value, you
will want to use .inject(). Doing so looks like code below:

b_val = tf.ones([1, circuit.getNode("b").dim])
circuit.inject([("b", "z", b_val)])
readouts, delta = circuit.settle(
 readout_vars=[("e", "pred_mu"),("e", "pred_targ")],
 calc_delta=False # turn off update computation
)

node_value = circuit.extract("b", "z")
print(" -> Inspecting value of Node b.z = {}".format(node_value.numpy()))

which looks nearly identical to the clamping code we wrote above. However, the
result of this computation is quite different as seen in the terminal output
below:

 -> Inspecting value of Node b.z = [[8.505673 8.249885 8.257135 7.7380524 8.38973 8.267948]]

Notice that the values within z of node b are NOT ones like we saw in our
previous clamping example. This is because this compartment only started at the
first time step as a vector of ones but, according to the internal dynamics of
node b which are driven by the originally useless feedback loop/cable
e_b we created earlier – recall, at the time, that we wrote that this cable
would do nothing because we clamped z in node b to a vector of ones. If
we had instead injected the vector of ones, this compartment in node b
would indeed have evolved over time.

Enforcing Constraints

One final item that you may find important when simulating the evolution of
an NGCGraph is the enforcing of constraints through the .apply_constraints()
routine.
For example, you want to ensure that the Euclidean norms of the columns of a
particular matrix A in one of your system’s cables never exceed a certain value
(see Walkthrough #4 for a case that requires
this constraint to be true).

To enforce a constraint on a particular cable, all you need to do is first make
the desired cable aware of this constraint like so:

a_amu = a.wire_to(a_mu, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=dcable_cfg)
constraint_cfg = {"clip_type":"norm_clip","clip_mag":1.0,"clip_axis":1}
a_amu.set_constraint(constraint_cfg)

then, whenever you call the .apply_constraints() of your NGCGraph simulation object,
this constraint will internally be enforced/applied to the cable a_amu. Typically,
this call looks like the following (using our 5-node circuit as an example):

readouts, delta = circuit.settle(
 clamped_vars=[("b", "z",b_val)],
 readout_vars=[("e", "L")]
)
opt.apply_gradients(zip(delta, circuit.theta))
circuit.apply_constraints() # generally apply constraints after an optimizer is used...
circuit.clear()

where we see that we call .apply_constraints() AFTER the Tensorflow optimizer
has been used to actually alter the values of the synapses of the NGC system.
If, after the SGD update had resulted in the norms of any of the columns in
the matrix A of cable a_amu to exceed the value of 1.0, then .apply_constraints()
would further alter this matrix to make sure it no longer violates this constraint.

A Note on Synaptic Decay: Like norm constraints, weight/synapse decay is also
treated as a (soft) constraint in an NGCGraph. If you want to apply a small
decay to a particular synaptic bundle matrix A in a particular cable, you can
easily do so by simply calling the .set_decay() function like so:

a_b.set_decay(decay_kernel=("l1",0.00005)) # apply L1 weight decay to *A* in cable *a_b*

which would apply a decay factor based on a centered Laplacian distribution (
or an L1 penalty). If you chose l2 instead, the decay factor applied would then
be based on a centered Gaussian distribution (or an L2 penalty) over each element in matrix A
of cable a_b.

A Note on Graph Visualization

Earlier, we explored ngc-learn’s support for NGC architecture visualization, where
we learned about the graph visualizer and using the short_name argument to
superimpose desired “nicknames” for particular cables (yielding a less cluttered
graph plot). As you build more complex graphs that combine different kinds
of nodes, you will see other aspects of ngc-learn’s node and cable coloring/visual
depiction scheme rendered. In this note, we will briefly define the full scheme:

	dense cables (DCable) are solid arcs,

	simple cables (SCable) are dashed arcs,

	non-learnable/evolving cables are colored blue,

	learnable/evolving cables are colored red,

	state nodes are colored gainsboro (or a grayish color),

	error nodes are colored mistyrose (or light reddish color) with slightly larger text,

	forward nodes are colored lavender, and

	spiking nodes are colored antiquewhite.

For example, a visualization of a hierarchical NGC generative model containing both
state and error nodes would be the following:

	[image: ../_images/gncn_viz.png]

Note that the plotted graph produced by the visualizer is always a directed graph.
Furthermore, notice that the visualize_graph() method returns a full networkx
directed graph, amenable to all of the graph operations/network analysis tools
available to networkx graph objects. You can also alter the output path
of the generated dynamic HTML (*.html) object by modifying output_dir, which
will also change the location of a GraphML object saved to disk which is auto-named
<name_of_your_ngcgraph>.graphml (for use with external graph analysis toolkits
that can read in the GraphML file format).

Conclusion

You now have successfully gone through the core details and functionality of ngc-learn’s
nodes-and-cables system. The next step is to build your own NGC systems/models
for your own research projects and play with the pre-designed systems in the Model
Museum (and go through the walkthroughs). In future upcoming tutorial lessons, we will
cover topics such designing your own customs nodes or cables that interact with
the nodes-and-cables system and working with the low-level online functionality of
simulated NGC systems.

References

Hebb, Donald Olding. The organization of behavior: A neuropsychological theory.
Psychology Press, 2005.

 Walkthrough 1: Learning NGC Generative Models

Walkthrough 1: Learning NGC Generative Models

In this demonstration, we will learn how to use ngc-learn’s Model Museum to fit an
NGC generative model, which is also called a generative neural coding network (GNCN),
to the MNIST database. Specifically, we will focus on training three key models,
each from different points in history, and estimate their marginal log likelihoods.
Along the way, we will see how to fit a prior to our models and examine how a simple
configuration file can be set up to allow for easy recording of experimental
settings.

Concretely, after going through this demonstration, you will:

	Understand how to import and train models from ngc-learn’s Model Museum.

	Fit a density estimator to an NGC model’s latent space to create a prior.

	Estimate the marginal log likelihood of three GNCNs using the prior-fitting
scheme designed in this demonstration.

Note that the two folders of interest to this demonstration are:

	walkthroughs/demo1/: this contains the necessary scripts and configuration files

	walkthroughs/data/: this contains a zipped copy of the MNIST database arrays

Setting Up and Training a Generative System

To start, navigate to the walkthroughs/ directory to access the example/demonstration
code and further enter the walkthroughs/data/ sub-folder. Unzip the file
mnist.zip to create one more sub-folder that contains a set of numpy arrays each house
a different slice of the MNIST database, i.e., trainX.npy and trainY.npy compose
the training set (image patterns and their labels), validX.npyand validY.npy make
up the development/validation set, and testX.npyand testY.npy compose the test set.
Note that pixels in all image vectors have been normalized for you, to the range of [0,1].

Next, in walkthroughs/demo1/, observe the provided script sim_train.py, which contains the
code to execute the training process of an NGC model. Inside this file, we can export
one of three possible GNCNs from ngc-learn’s Model Museum, i.e., the
GNCN-t1 (which
is an instantiation of the model proposed in Rao & Ballard, 1999 [1]),
the GNCN-t1-Sigma (an instantiation of the model proposed in Friston
2008 [2]), and the GNCN-PDH (one of the models proposed in
Ororbia & Kifer 2022 [3]).

Importing models from the Model Museum is straightforward and only
requires a few lines to be placed in the header of a training script. Notice
that we import several items besides the models, including a DataLoader,
like so:

from ngclearn.utils.data_utils import DataLoader

some metrics, transformations, and other I/O tools, as follows:

from ngclearn.utils.config import Config
import ngclearn.utils.transform_utils as transform
import ngclearn.utils.metric_utils as metric
import ngclearn.utils.io_utils as io_tools

where Config is an argument configuration object that
reads in values set by the user in a *.cfg configuration file, transform_utils
contains mathematical functions to alter vectors/matrices (we will use the binarize()
function, which, inside of sim_train.py, will convert the MNIST image patterns
to their binary equivalents), and metric_utils contains measurement
functions (we will use the binary cross entropy routine bce()).
Finally, we import the models themselves, as shown below:

from ngclearn.museum.gncn_t1 import GNCN_t1
from ngclearn.museum.gncn_t1_sigma import GNCN_t1_Sigma
from ngclearn.museum.gncn_pdh import GNCN_PDH

With the above imported from ngc-learn, we have everything we need to craft a
full training cycle as well as track a model’s out-of-sample inference ability
on validation data.

Notice in the script, at the start of our with-statement (which is used to force
the following computations to reside in a particular GPU/CPU), before initializing
a chosen model, we define a second special function to track another important
quantity special to NGC models – the total discrepancy (ToD) – as follows:

def calc_ToD(agent):
 """Measures the total discrepancy (ToD) of a given NGC model"""
 ToD = 0.0
 L2 = agent.ngc_model.extract(node_name="e2", node_var_name="L")
 L1 = agent.ngc_model.extract(node_name="e1", node_var_name="L")
 L0 = agent.ngc_model.extract(node_name="e0", node_var_name="L")
 ToD = -(L0 + L1 + L2)
 return float(ToD)

This function is used to measure the internal disorder, or approximate free energy,
within an NGC model based on its error neurons (since, internally, our imported models
use the specialized ENode to create error neuron
nodes, we retrieve each node’s specialized compartment known as the scalar local
loss L – for details on nodes and their compartments, see
Demonstration # 2 for details – but you
could also compute each local loss with distance functions, e.g.,
L2 = tf.norm(agent.ngc_model.extract(node_name="e2", node_var_name="phi(z)"), ord=2)).
Measuring ToD allows us to monitor the entire NGC system’s optimization
process and make sure it is behaving correctly, making progress towards reaching
a stable fixed-point.

Next, we write an evaluation function that leverages a DataLoader and a NGC model
and returns some useful problem-specific measurements. In this demo’s case,
we want to measure and track binary cross entropy across training iterations/epochs.
The evaluation loop can be written like so:

def eval_model(agent, dataset, calc_ToD, verbose=False):
 """
 Evaluates performance of agent on this fixed-point data sample
 """
 ToD = 0.0 # total disrepancy over entire data pool
 Lx = 0.0 # metric/loss over entire data pool
 N = 0.0 # number samples seen so far
 for batch in dataset:
 x_name, x = batch[0]
 N += x.shape[0]
 x_hat = agent.settle(x) # conduct iterative inference
 # update tracked fixed-point losses
 Lx = tf.reduce_sum(metric.bce(x_hat, x)) + Lx
 ToD = calc_ToD(agent) + ToD # calc ToD
 agent.clear()
 if verbose == True:
 print("\r ToD {0} Lx {1} over {2} samples...".format((ToD/(N * 1.0)), (Lx/(N * 1.0)), N),end="")
 if verbose == True:
 print()
 Lx = Lx / N
 ToD = ToD / N
 return ToD, Lx

Notice that, in the above code snippet, we pass in the current NGC model (agent),
the DataLoader (dataset), and the ToD function we wrote earlier.
Now we have a means to measure some aspect of the generalization
ability of our NGC model, all that remains is to craft a training process loop
for NGC model. This loop could take the following form:

create a training loop
ToD, Lx = eval_model(agent, train_set, calc_ToD, verbose=True)
vToD, vLx = eval_model(agent, dev_set, calc_ToD, verbose=True)
print("{} | ToD = {} Lx = {} ; vToD = {} vLx = {}".format(-1, ToD, Lx, vToD, vLx))

sim_start_time = time.time()
##
for i in range(num_iter): # for each training iteration/epoch
 ToD = 0.0 # estimated ToD over an epoch (or whole dataset)
 Lx = 0.0 # estimated total loss over epoch (or whole dataset)
 n_s = 0
 # run single epoch/pass/iteration through dataset
 ##
 for batch in train_set:
 n_s += batch[0][1].shape[0] # track num samples seen so far
 x_name, x = batch[0]
 x_hat = agent.settle(x) # conduct iterative inference
 ToD_t = calc_ToD(agent) # calc ToD
 Lx = tf.reduce_sum(metric.bce(x_hat, x)) + Lx
 # update synaptic parameters given current model internal state
 delta = agent.calc_updates()
 opt.apply_gradients(zip(delta, agent.ngc_model.theta))
 agent.ngc_model.apply_constraints()
 agent.clear()

 ToD = ToD_t + ToD
 print("\r train.ToD {0} Lx {1} with {2} samples seen...".format(
 (ToD/(n_s * 1.0)), (Lx/(n_s * 1.0)), n_s),
 end=""
)
 ##
 print()
 ToD = ToD / (n_s * 1.0)
 Lx = Lx / (n_s * 1.0)
 # evaluate generalization ability on dev set
 vToD, vLx = eval_model(agent, dev_set, calc_ToD)
 print("---")
 print("{} | ToD = {} Lx = {} ; vToD = {} vLx = {}".format(
 i, ToD, Lx, vToD, vLx)
)

The above code block represents the core training process loop but you will also
find in sim_train.py a few other mechanisms that allow for:

	model saving/check-pointing,

	an early-stopping mechanism based on patience, and

	some metric/ToD tracking by storing and saving updated sets of scalar lists to disk.
Taking all of the above together, you can simulate the NGC training process after setting
some chosen values in your *.cfg configuration file, which is read in near the beginning
of your training script. For example, in train_sim.py, you will see some basic
code that reads in an external experimental configuration *.cfg file:

options, remainder = getopt.getopt(sys.argv[1:], '', ["config=","gpu_id=","n_trials="])
GPU arguments and configuration
cfg_fname = None
use_gpu = False
n_trials = 1
gpu_id = -1
for opt, arg in options:
 if opt in ("--config"):
 cfg_fname = arg.strip()
 elif opt in ("--gpu_id"):
 gpu_id = int(arg.strip())
 use_gpu = True
 elif opt in ("--n_trials"):
 n_trials = int(arg.strip())
mid = gpu_id
if mid >= 0:
 print(" > Using GPU ID {0}".format(mid))
 os.environ["CUDA_VISIBLE_DEVICES"]="{0}".format(mid)
 #gpu_tag = '/GPU:0'
 gpu_tag = '/GPU:0'
else:
 os.environ["CUDA_VISIBLE_DEVICES"]="-1"
 gpu_tag = '/CPU:0'

save_marker = 1

load in and build the configuration object
args = Config(cfg_fname) # contains arguments for the simulation

Furthermore, notice that the above code snippet contains a bit of setup to allow you
to switch to a GPU of your choice (if you set gpu_id to a value >= 0)
or a CPU if no GPU is available (gpu_id should be set to -1). Notice that the
Config object reads in a /path/to/file_name.cfg text file and produces a
queryable object that is backed by a dictionary/hash-table.

The above code blocks/snippets can be found in train_sim.py which has been written
for you to study and use/run along with the provided example configuration scripts
(notice for each model there one subfolder in /walkthroughs/demo1/ for each of the
three models for you to train, each with their own training script fit.cfg and
analysis.cfg script).
Let us go ahead and train one of each the three models that we imported into our
training script at the start of this demonstration.
Run the following three commands as shown below:

$ python sim_train.py --config==gncn_t1/fit.cfg --gpu_id=0 --n_trials=1

$ python sim_train.py --config==gncn_t1_sigma/fit.cfg --gpu_id=0 --n_trials=1

$ python sim_train.py --config==gncn_pdh/fit.cfg --gpu_id=0 --n_trials=1

Alternatively, you can also just run the global bash script exec_experiments.sh
that we have also provided in /walkthroughs/demo1/, which will just simply execute the above
three experiments sequentially for you. Run this bash script like so:

$./exec_experiments.sh

As an individual script runs, you will see printed to the terminal, after each epoch,
an estimate of the ToD and the BCE over the full training sample as well as the
measured validation ToD and BCE over the full development data subset. Note that our
training script retrieves from the walkthroughs/data/mnist/ folder (that you unzipped earlier)
only the training arrays, i.e., trainX.npy and trainY.npy, and the
validation set arrays, i.e., validX.npy and validY.npy. We will use the
test set arrays testX.npy and testY.npy in a follow-up analysis once we have
trained each of our models above. After all the processes/scripts terminate, you can
check inside each of the model folders, i.e., walkthroughs/demo1/gncn_t1/, walkthroughs/demo1/gncn_t1_sigma/,
and walkthroughs/demo1/gncn_pdh/, and see that your script(s) saved/serialized to disk a
few useful files:

	Lx0.npy: the BCE training loss for the training set over epoch

	ToD0.npy: the ToD measurement for the training set over epoch

	vLx0.npy: the validation BCE loss over epoch

	vToD0.npy: the validation ToD measurement loss over epoch

	model0.ngc: your saved/serialized NGC model (with best validation performance)

You can use then plot the numpy arrays using matplotlib or your favorite
visualization library/package to create curves for each measurement over epoch.
The final object, the model object model0.ngc, is what we will use in the next section to
quantitatively evaluate how well our NGC models work as a generative models.

Analyzing a Trained Generative Model

Now that you have trained three NGC generative models, we now want to analyze them a
bit further, beyond just the total discrepancy and binary cross entropy (the latter
of which just tells you how good the model is at auto-associative reconstruction
of samples of binary-valued data).

In particular, we are interested in measuring the marginal log likelihood of
our models, or log p(x). In general, calculating such a quantity exactly is
intractable for any reasonably-sized model since we would have marginalize out
the latent variables Z = {z1, z2, z3} of each our generative models, requiring
us to evaluate an integral over a continuous space. However, though things seem
bleak, we can approximate this marginal by resorting to a Monte Carlo estimate and
simply draw as many samples as we need (or can computationally handle) from the
underlying prior distribution inherent to our NGC model in order to calculate log p(x).
Since the NGC models that we have designed/trained in this demo embody an underlying
directed generative model, i.e., p(x,Z) = p(x|z1) p(z1|z2) p(z2|z3) p(z3), we
can use efficient ancestral sampling to produce fantasy image samples after we
query the underlying latent prior p(z3).

Unfortunately, unlike models such as the variational autoencoder (VAE), we do not
have an explicitly defined prior distribution, such as a standard multivariate Gaussian,
that makes later sampling simple (the VAE is trained with an encoder that
forces the generative model to stick as close as it can to this imposed prior).
An NGC model’s latent prior is, in contrast to the VAE, multimodal and thus
simply using a standard Gaussian will not quite produce the fantasized samples
we would expect.
Nevertheless, we can, in fact, far more accurately capture an NGC model’s prior p(z3)
by treating it as a mixture of Gaussians and instead estimate its multimodal density
with a Gaussian mixture model (GMM). Once we have this learned GMM prior, we can
sample from this model of p(z3) and run these samples through the NGC graph
via ancestral sampling (using the prebuilt ancestral projection function project()).

ngc-learn is designed to offer some basic support for density estimation, and
for this demonstration, we will import and use its GMM density estimator (which
builds on top of scikit-learn’s GMM base model), i.e., ngclearn.density.gmm.
First, we will need to extract the latent variables from the trained NGC model,
which simply requires us to adapt our eval_model() function in our training script
to also now return a design matrix where each row contains one latent code vector produced
by our model per data point in a sample pool.
Specifically, all we need to write is the following:

def extract_latents(agent, dataset, calc_ToD, verbose=False):
 """
 Extracts latent activities of an agent on a fixed-point data sample
 """
 latents = None
 ToD = 0.0
 Lx = 0.0
 N = 0.0
 for batch in dataset:
 x_name, x = batch[0]
 N += x.shape[0]
 x_hat = agent.settle(x) # conduct iterative inference
 lats = agent.ngc_model.extract(node_name, cmpt_name)
 if latents is not None:
 latents = tf.concat([latents,lats],axis=0)
 else:
 latents = lats
 ToD_t = calc_ToD(agent) # calc ToD
 # update tracked fixed-point losses
 Lx = tf.reduce_sum(metric.bce(x_hat, x)) + Lx
 ToD = calc_ToD(agent) + ToD
 agent.clear()
 print("\r ToD {0} Lx {1} over {2} samples...".format((ToD/(N * 1.0)), (Lx/(N * 1.0)), N),end="")
 print()
 Lx = Lx / N
 ToD = ToD / N
 return latents, ToD, Lx

Notice we still keep our measurement of the ToD and BCE just as an extra
sanity check to make sure that any model we de-serialize from disk yields values
similar to what we measured during our training process.
Armed with the extraction function above, we can gather the latent codes of
our NGC model. Notice that in the provided walkthroughs/demo1/extract_latents.py script,
you will find the above function fully integrated and used.
Go ahead and run the extraction script for the first of your three models:

$ python extract_latents.py --config==gncn_t1/analyze.cfg --gpu_id=0

and you will now find inside the folder walkthroughs/demo1/gncn_t1/ a new numpy array
file z3_0.npy, which contains all of the latent variables for the top-most layer
of your GNCN-t1 model (you can examine the configuration file analyze.cfg to see
what arguments we set to achieve this).

Now it is time to fit the GMM prior. In the fit_gmm.py script, we have set
up the necessary framework for you to do so (using 18,000 samples from the
training set to speed up calculations a bit). All you need to do at this point,
still using the analyze.cfg configuration, is execute this script like so:

$ python fit_gmm.py --config==gncn_t1/analyze.cfg --gpu_id=0

and after your fitting process script terminates, you will see inside your model
directory walkthroughs/demo1/gncn_t1/ that you have a de-serialized learned
prior prior0.gmm.

With this prior model prior0.gmm and your previously trained NGC system
model0.ngc, you are ready to finally estimate your marginal log likelihood log p(x).
The final script provided for you, i.e., walkthroughs/demo1/eval_logpx.py, will
do this for you. It simply takes your full system – the prior and the model – and
calculates a Monte Carlo estimate of its log likelihood using the test set.
Run this script as follows:

$ python eval_logpx.py --config==gncn_t1/analyze.cfg --gpu_id=0

and after it completes (this step can take a bit more time than the other steps,
since we are computing our estimate over quite a few samples), in addition to
outputting to I/O the calculated log p(x), you will see two more items in your
model folder walkthroughs/demo1/gncn_t1/:

	logpx_results.txt: the recorded marginal log likelihood

	samples.png: some visual samples stored in an image array for you to view/assess

If you cat the first item, you should something similar to the following (which
should be the same as what was printed to I/O when you evaluation script finished):

$ cat gncn_t1/logpx_results.txt
Likelihood Test:
 log[p(x)] = -103.63043212890625

and if you open and view the image samples, you should see something similar to:

 Walkthrough 2: Creating Custom NGC Predictive Coding Systems

Walkthrough 2: Creating Custom NGC Predictive Coding Systems

In this demonstration, we will learn how to craft our own custom NGC system
using ngc-learn’s fundamental building blocks – nodes and cables. After going
through this demonstration, you will:

	Be familiar with some of ngc-learn’s basic theoretical motivations.

	Understand ngc-learn’s basic building blocks, nodes and cables, and how they
relate to each other and how they are put together in code. Furthermore, you will
learn how to place these connected building blocks into a simulation object to
implement inference and learning.

	Craft and simulate a custom nonlinear NGC model based on exponential linear units
to learn how to mimic a streaming mixture-based data generating process. In this step,
you will learn how to design an ancestral projection graph to aid in fantasizing data
patterns that look like the target data generating process.

Note that the folder of interest to this demonstration is:

	walkthroughs/demo2/: this contains the necessary simulation script

Theoretical Motivation: Nodes, Compartments, and Cables

At its core, part of ngc-learn’s fundamental design is inspired by (neural)
cable theory ,
where neurons, arranged in complex connectivity structures, are viewed as
performing dendritic calculations. In other words, a particular neuron integrates
information from different input signals (for example, those from other neurons), in
often highly nonlinear ways through a complex dendritic tree.

Although modeling a neuronal system through the lens of cable theory is certainly
complex and intricate in of itself, ngc-learn is built in this direction, starting
with the idea a neuron (or a cluster of them) can be viewed as a node, or
Node (also see Node Model), and each bundle
of synapses that connect nodes can be viewed as a cable, or
Cable (also see Cable Model).
Each node has different, multiple “compartments” (which are named), which are regions
or slots inside the node that other nodes can deposit information/signals into.
These compartments allow a node to collect information from many different connected/related nodes
and then, within its integration routine (or step()), decide how to combine the
different signals in order to calculate its own activity (loosely corresponding to a
rate-coded firing rate – we will learn how to model spike trains in a later
demonstration). As a result, many nodes and cables yield an NGC system where each
node is itself, in general, a stateful computation (even if we are processing static
data such as images).

Building and Simulating NGC Systems

The Building Blocks: Nodes and Cables

With the above aspect of ngc-learn’s theoretical framing in mind, we can craft
connectivity patterns of our own by deciding the form that each node and cable
in our system will take. ngc-learn currently offers a few core nodes and cable types
(note ngc-learn is an evolving software framework, so more node/cable types are to come
in future releases, either through the NAC team or community contributions).
The core node type set currently includes SNode, ENode, and FNode (all inheriting
from the Node base class) while the current cable type set includes DCable and
SCable (all inherited from the Cable base class).

An SNode refers to a stateful node (see SNode),
which is one of the primary nodes you will
work with when crafting NGC systems. A stateful node contains inside of it a cluster
(or block) of neurons, the number of which is controlled through the dim
argument. To initialize a state node, we simply invoke the following:

integrate_cfg = {"integrate_type" : "euler", "use_dfx" : True}
prior_cfg = {"prior_type" : "laplace", "lambda" : 0.001}
a = SNode(name="a", dim=64, beta=0.1, leak=0.001, act_fx="relu",
 integrate_kernel=integrate_cfg, prior_kernel=prior_cfg)

where we notice that the above creates a state node with 64 neurons that will
update themselves according to an Euler integration step (step size of 0.1 and
a leak of 0.001) and apply a relu post-activation to compute their
post-activity values. Furthermore, notice that a Laplacian prior has been place
over the neural activities within the state a (weighted by the strength
coefficient lambda) – such a prior is meant to encourage neural activity values
towards zero (yielding sparser patterns).
A state node, in ngc-learn 0.0.1, contains five key compartments: dz_td, dz_bu,
z, phi(z), and mask. z represents the actual state values of the neurons
inside the node while the compartment phi(z) is the nonlinear transform of z
(indicating the application of the node’s encoded activation/transfer function,
e.g., relu in the case of node a in the example above). dz_td and dz_bu
are state update compartments, where (vector) signals from other nodes are deposited
(and summed together vector-wise), with the notable exception that dz_bu can be
weighted by the first derivative of the activation function encoded into the
state node (for example, in a above, signals deposited into dz_bu are
element-wise multiplied by the relu derivative, or d.phi(z)/d.z = d.relu(z)/d.z).
While, in principle, any node can be made to deposit into any compartment of another
node, the intentional and primary use of an SNode entails letting the node itself
automatically update z and phi(z) according to the integration function configured
(such as Euler integration) while letting other nodes deposit signal values into
dz_td and dz_bu. (This demonstration will assume this form of operation.)

While a state node by itself is not all that interesting, when we connect it to
another node, we create a basic computation system where signals are passed from
a source node to a destination node. To connect a node to another node, we need
to wire them together with a Cable, which can transform signals between them
with a dense bundle of synapses (as in the case of a DCable) or simply carry
along and potentially weight by a fixed scalar multiplication (as in the case of
an SCable). For example, if we want to wire node a to a node b through a
dense bundle of synapses, we would do the following:

a = SNode(name="a", dim=64, beta=0.1, leak=0.001, act_fx="relu",
 integrate_kernel=integrate_cfg, prior_kernel=prior_cfg)
b = SNode(name="b", dim=32, beta=0.05, leak=0.002, act_fx="identity",
 integrate_kernel=integrate_cfg, prior_kernel=None)

init_kernels = {"A_init" : ("gaussian",0.025)}
dcable_cfg = {"type": "dense", "init_kernels" : init_kernels, "seed" : 69}
a_b = a.wire_to(b, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=dcable_cfg)

where we note that the cable/wire a_b, of type DCable (see DCable),
will pull a signal from the phi(z) compartment of node a and transmit/transform
this signal along the synaptic parameters it embodies (a dense matrix where each synaptic
value is randomly initialized from a zero-mean Gaussian distribution and
standard deviation of 0.025) and place the resultant signal inside
the dz_td compartment of node b.

Currently, an SNode (in ngc-learn version 0.2.0), integrates over two
compartments – dz_td (top-down pressure signals) and dz_bu (bottom-up
potentially weighted signals), and finally combines them through a linear combination
to produce a full update to the internal state compartment z. Note that many
external nodes can deposit signal values into each compartment dz_td and dz_bu
and each new deposit value is directly summed with the current value of the compartment.
For example, a five-node system/circuit could take the following form:

carryover_cable_cfg = {"type": "simple", "coeff": 1.0} # an identity cable
a = SNode(name="a", dim=10, beta=0.1, leak=0.001, act_fx="identity")
b = SNode(name="b", dim=5, beta=0.05, leak=0.002, act_fx="identity")
c = SNode(name="c", dim=2, beta=0.05, leak=0.0, act_fx="identity")
d = SNode(name="d", dim=2, beta=0.05, leak=0.0, act_fx="identity")
e = SNode(name="e", dim=15, beta=0.05, leak=0.0, act_fx="identity")

a_c = a.wire_to(c, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=dcable_cfg)
b_c = b.wire_to(c, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=dcable_cfg)
d_c = d.wire_to(c, src_comp="phi(z)", dest_comp="dz_bu", cable_kernel=carryover_cable_cfg)
e_c = e.wire_to(c, src_comp="phi(z)", dest_comp="dz_bu", cable_kernel=dcable_cfg)

where a and b both deposit signals (which will be summed) into the dz_td
compartment of c while d and e deposit signals into the dz_bu
compartment of c. Crucially notice that we introduce the other type of cable from
d to c, i.e., an SCable (see SCable), which
is a simple carry-over cable that we have merely
configured (in the dictionary carryover_cable_cfg) to only pass along information
information from node d to c, simply multiplying the vector by 1.0 (NOTE:
if a simple cable is being used, the dimensionality of the source node and the
destination node should be exactly the same).
Bear in mind that any general Cable object is directional – it only
transmits in the direction of its set wiring pattern (from src_comp of its
source node to the dest_comp of the destination node). So if it is desired, for
instance, that information flows not only from a to c but from c to a,
then one would need to directly wire node c back to a following a similar
pattern as in the code snippet above. Finally, note that when you wire together
two nodes, they each become aware of this wiring relationship (i.e., node a
understands that it feeds into node c and node c knows that a feeds into it).

To learn or adjust the synaptic cables connecting the nodes in the five-node
system we created above, we need to configure the cables themselves to use
a local Hebbian-like update. For example, if we want the cable a_c to evolve
over time, we notify the node that it needs to update according to:

a_c.set_update_rule(preact=(a,"phi(z)"), postact=(c,"phi(z)"), param=["A"])

where the above sets a (two-factor) Hebbian update that will compute an adjustment
matrix of the same shape as the underlying synaptic matrix that connects a to
c (essentially a product of post-activation values in a with post-activation
values in c). Notice that a pre-activation term (preact) requires a 2-tuple
containing a target node object and a string denoting which compartment within
that node to extract information from to create the pre-synaptic Hebbian term.
(postact refers to the post-activation term, the argument itself following the
same format at preact).

Beyond the SNode, we need to study one more important
type of node – the ENode (see ENode). While,
in principle, one could build a complete NGC system with just state nodes and
cables (which will be the subject of future
walkthroughs/tutorials), an important aspect of NGC computation we have not
addressed is that of the error neuron, represented in ngc-learn by an ENode.
An ENode is a special type of node that performs a mismatch calculation (or a
computation that compares how far off one quantity is from another) and is, in
fact, a mathematical simplification of a state node known as a fixed-point.
In short, one can simulate a mismatch calculation over time by simply modeling
the final result such as the (vector) subtraction of one value from another. In
ngc-learn (up and including version 0.2.0), in addition to z and phi(z),
the ENode also contains the key following compartments: pred_mu, pred_targ,
and L. pred_mu is a compartment that contains a summation
of deposits that represent an external signals that form a “prediction” (or expectation)
while pred_targ is a compartment that contains a summation of external signals
that form a “target” (or desired value/signal). L is a useful compartment as
this is internally calculated by the error node to represent the loss function by which
the fixed-point calculation is derived, i.e., in the case of simple subtraction where
pred_mu - pred_targ, this would mean that the error node is calculating the first
derivative of the mean squared error (MSE).

Now that we know how an error node works, let us create a simple 3-node circuit
that leverages an error node mismatch computation:

init_kernels = {"A_init" : ("gaussian",0.025)}
dcable_cfg = {"type": "dense", "init_kernels" : init_kernels, "seed" : 69}
pos_carryover = {"type": "simple", "coeff": 1.0}
neg_carryover = {"type": "simple", "coeff": -1.0}

Notice that we make b and e have the same dimension (10) given that we
want to wire their information exchange paths with SCable(s)

a = SNode(name="a", dim=20, beta=0.05, leak=0.001, act_fx="identity")
b = SNode(name="b", dim=10, beta=0.05, leak=0.002, act_fx="identity")
e = ENode(name="e", dim=10)

wire the states a and b to error neurons/node e
a_e = a.wire_to(e, src_comp="phi(z)", dest_comp="pred_mu", cable_kernel=dcable_cfg)
b_e = b.wire_to(e, src_comp="z", dest_comp="pred_targ", cable_kernel=pos_carryover)

wire error node e back to nodes a and b to provide feedback to their states
e.wire_to(a, src_comp="phi(z)", dest_comp="dz_bu", mirror_path_kernel=(a_e,"A^T"))
e.wire_to(b, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=neg_carryover)

set up local Hebbian updates for a_e
a_e.set_update_rule(preact=(a,"phi(z)"), postact=(e,"phi(z)"), param=["A"])

where we see that node a deposits a prediction signal into the pred_mu
compartment of e and node b deposits a target signal into the pred_targ
compartment of e (where a simple cable pos_carryover will just multiply
this signal by 1 and dump it into the appropriate compartment). Notice that we
have wired e back to a using a special flag/argument in the wire_to() routine,
i.e., mirror_path_kernel. This special argument simply takes in a 2-tuple where
the first element is the physical cable object we want to reuse while the second
is a string flag telling ngc-learn how to re-use the cable (in this case, A^T,
which means that we use the transpose of the underlying weight matrix contained
inside of the dense cable a_e). Also observe that e has been wired back to
node b with a simple cable that multiplies the post-activation of e by -1.
The above 3-node circuit we have built is illustrated in the diagram below.

[image: ../_images/ngclearn_nodes_and_cables.png]
Before we turn our attention to simulating the interactions/processing of the
above nodes and cables, there is one more specialized node worthy of mention –
the forward node or FNode (see FNode).
This node is simple – it only contains three
compartments: dz, z, and phi(z). An FNode operates much like an SNode
except that it fundamentally is “stateless” – external nodes deposit signals
into dz (where multiple deposits are vector summed) and then this value is
directly and automatically placed inside of z after which an encoded activation
function is applied to compute phi(z). Note that an SNode can be modified
to also behave like an FNode by setting its argument .zeta (or the amount of
recurrent carry-over inside the neural state dynamics) equal to 0 and
setting beta to 1. However, the FNode is a convenience node and is often
used to build an ancestral projection graph, of which we will describe later.

Simulating Connected Nodes as Systems with the NGCGraph

Now that we have a basic grasp as to how nodes and cables can be instantiated
and connected to build neural circuits, let us examine the final key step required to
build an NGC system – the simulation object NGCGraph
(see NGCGraph).

An NGCGraph is a general structure that will take in nodes that have been wired
together with cables and simulate their evolution/processing over time. This structure
crucially allows us to specify the execution sequence of nodes (or order of operations)
within a discrete step of simulation time.
It also provides several basic utility functions to facilitate analysis of the internal
nodes. In this demo, we will focus on the core primary low-level routines one will want
to conduct most simulations, i.e., set_cycle(), settle(), apply_constraints(),
calc_updates(), clear(), and extract(). (Note that higher-level convenience
functions that combine all of these functions together, like evolve(), could be used,
but we will not cover them in this demonstration.)
Let us take the five node circuit we built earlier and place them in a system simulation:

model = NGCGraph(K=5)
model.proj_update_mag = -1.0 # bound the calculated synaptic updates (<= 0 turns this off)
model.proj_weight_mag = 1.0 # constrain the Euclidean norm of the rows of each synaptic matrix
model.set_cycle(nodes=[a,b,c,d]) # execute nodes a through d (in order left to right)
model.set_cycle(nodes=[e]) # execute node e
model.apply_constraints() # immediately applies constraints to synapses after initialization
model.compile(batch_size=1)

where the above seven lines of code create a full NGC system using the nodes and cables
we set before. The set_cycle() function takes in a list/array of nodes and
tells the underlying NGCGraph system to execute them (in the order of their appearance
within the list) first at each step in time. Making multiple subsequent calls
to set_cycle() will add in addition execution cycles to an NGC system’s step.
Note that one simulation step of an NGCGraph consists of multiple cycles, executed
in the order of their calls when the simulation object was initialized. For example,
one step of our “model” object above would first execute the internal .step()
functions of a, b, c, then d in the first cycle and then execute the
.step() of e in the second cycle. Also observe that in our NGCGraph constructor,
we have told ngc-learn that simulations are only ever to be K=5 discrete time steps long.
Finally note that, when you set execution cycles for an NGCGraph, ngc-learn
will examine the cables you wired between nodes and extract any learnable
synaptic weight matrices into a parameter object .theta.

The final item to observe in the code snippet above is the call to compile()
routine. This function is run after putting together your NGCGraph in order
to ensure the entire system is self-coherent and set up to work correctly with
the underlying static graph compilation used by Tensorflow 2 to drastically
speed up your code (Note: the compile() routine and static graph optimization
was integrated into ngc-learn version 0.2.0 onward.) The only argument you
need to set for compile() is the batch_size argument – you must decide
what fixed batch size you will use throughout simulation so that way ngc-learn
can properly compile a static graph in order to optimize the underlying code
for fast in-place memory calculations and other computation graph specific
items. Note that if you do not wish to use ngc-learn’s static graph optimization, simply
set the use_graph_optim to False via .compile(use_graph_optim=False), which
will allow you to use variable-length batch sizes (at the cost of a bit slower
computation).

With the above code, we are now done building the NGC system and can
begin using it to process and adapt to sensory data. To make our five-node circuit
process and learn from a single data pattern, we would then write the following:

opt = # ... set some TF optimization algorithm, such as SGD, here ...
x = tf.ones([1,10])
readouts = model.settle(
 clamped_vars=[("c","z",x)],
 readout_vars=[("a","phi(z)"),("b","phi(z)"),("d","phi(z)"),("e","phi(z)")]
)
print("The value of {} w/in Node {} is {}".format(readouts[0][0], readouts[0][1], readouts[0][2].numpy()))
update synaptic parameters given current model internal state
delta = model.calc_updates()
opt.apply_gradients(zip(delta, model.theta)) # apply a TF optimizer here
model.apply_constraints()
model.clear() # reset the underlying node states back to resting values

where we have crafted a trivial example of processing a vector of ones (x),
clamping this value to node c’s compartment z (note that clamping means we
fix the node’s compartment to a specific value and never let it evolve throughout
simulation), and then read out the value of the phi(v) compartment of nodes
a, b, c, and e. The readout_vars argument to settle() allows us to
tell an NGCGraph which nodes and which compartments we want to observe after it
run its simulated settling process over K=5 steps. An NGCGraph saves the
output of settle() into the readouts variable which is a list of triplets
of the form [(node_name, comp_name, value),...] and, in the example, above we
are deciding to print out the first node’s value (in its set phi(z) compartment).
After the NGCGraph executes its settling process, we can then tell it to update
all learnable synaptic weights (only for those cables that were configured to use a
Hebbian update with set_update_rule()) via the calc_updates(), which itself
returns a list of the synaptic weight adjustments, in the order of the synaptic
matrices the NGCGraph object placed inside of .theta.

Desirably, after you have obtained delta from calc_updates(), you can then use
it with a standard Tensorflow 2 adaptive learning rate such as stochastic gradient
descent or Adam. An important point to understand is that an NGC system attempts
to maximize its total discrepancy, which is a negative quantity that it would like
to be at zero (meaning all local losses within it have reached an equilibrium at zero) –
this is akin to optimizing the approximate free energy of the system. Internally,
an NGCGraph will multiply the Hebbian updates by a negative coefficient to allow
the user to directly use an external minimizer from a library such as Tensorflow.

After updating synaptic matrices using a Tensorflow optimizer, one then
calls apply_constraints() to ensure any weight matrix constraints are applied after
updating, finally ending with a call to clear(), which resets the values of all
nodes in the NGCGraph back to zero (or a resting state). (Note that if you do
not want the NGC system to reset its internal nodes back to resting zero states, then
simply do not call clear() – for example, on a
long temporal data stream such as a video feed, you might not want to reset the
NGC system back to its zero-resting state until the video clip terminates).

Learning a Data Generating Process: A Streaming NGC Model

Now that we familiarized ourselves with the basic mechanics of nodes and cables
as well as how they fit within a simulation graph, let us apply our knowledge to build
a nonlinear NGC generative model that learns to mimic a streaming data generating
process. Note that this part of the demonstration corresponds to the materials/scripts
provided within walkthroughs/demo2/.

In ngc-learn, within the generator module, there are a few data
generators to facilitate prototyping and simulation studies. Simulated data
generating processes can be used in lieu of real datasets and are useful for
early preliminary experimentation and proof-of-concept demonstrations (in statistics,
such experiments are called “simulation studies”).
In this demonstration, we will take a look at the MoG (mixture of Gaussians, see
MoG) static data generating process.
Data generating processes in ngc-learn typically offer a method called sample() and,
depending on the type of process being used, with process-specific arguments.
In the MoG process, we can initialize a non-temporal (thus “static”) process
as follows:

...initialize mu1, mu2, mu3, cov1, cov2, cov3...
mu_list = [mu1, mu2, mu3]
sigma_list = [cov1, cov2, cov3]
process = MoG(means=mu_list, covar=sigma_list, seed=69)

where the above creates a fixed mixture model of three multivariate Gaussian
distributions (each component has an equal probability of being sampled by default
in the MoG object). In the demonstration script
sim_dyn_train.py, you can see what specific mean and covariance values we
have chosen (for simplicity, we set our problem space to be two-dimensional and
have each covariance matrix designed to be explicitly diagonal). The advantage
of a data generator that we will exploit in this demonstration
is the fact that it can be queried online, i.e., we can call its sample() function
to produce fresh data sampled from its underlying generative process. This will allow

us to emulate the scenario of training an NGC system on a data stream (as opposed to
a fixed dataset like we did in the first demonstration).

With the data generating process chosen and initialized, we now turn to our NGC
generative model. The model we will construct will be a nonlinear model with
three layers – a sensory layer z0 and two latent neural variable layers z1 and z2.
The post-activation for z1 will be the exponential linear rectifier unit (ELU)
while the second layer will be set to the identity and bottle-necked to a two-dimensional
code so we can visualize the top-most latents easily later.
Our goal will be train our NGC model for several iterations and then use it to
synthesize/fantasize a new pool of samples, one for each known component of our
mixture model (since each component represents a “label”) where we will finally estimate
the sample mean and covariance of each particular pool to gauge how well the model
has been fit to the mixture process.

We create the desired NGC model as follows:

batch_size = 32
create cable wiring scheme relating nodes to one another
wght_sd = 0.025 #0.025 #0.05
init_kernels = {"A_init" : ("gaussian",wght_sd)}
dcable_cfg = {"type": "dense", "init_kernels" : init_kernels, "seed" : 69}
pos_scable_cfg = {"type": "simple", "coeff": 1.0}
neg_scable_cfg = {"type": "simple", "coeff": -1.0}
constraint_cfg = {"clip_type":"norm_clip","clip_mag":1.0,"clip_axis":1}

z2_mu1 = z2.wire_to(mu1, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=dcable_cfg)
z2_mu1.set_constraint(constraint_cfg)
mu1.wire_to(e1, src_comp="phi(z)", dest_comp="pred_mu", cable_kernel=pos_scable_cfg)
z1.wire_to(e1, src_comp="z", dest_comp="pred_targ", cable_kernel=pos_scable_cfg)
e1.wire_to(z2, src_comp="phi(z)", dest_comp="dz_bu", mirror_path_kernel=(z2_mu1,"A^T"))
e1.wire_to(z1, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=neg_scable_cfg)

z1_mu0 = z1.wire_to(mu0, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=dcable_cfg)
z1_mu0.set_constraint(constraint_cfg)
mu0.wire_to(e0, src_comp="phi(z)", dest_comp="pred_mu", cable_kernel=pos_scable_cfg)
z0.wire_to(e0, src_comp="phi(z)", dest_comp="pred_targ", cable_kernel=pos_scable_cfg)
e0.wire_to(z1, src_comp="phi(z)", dest_comp="dz_bu", mirror_path_kernel=(z1_mu0,"A^T"))
e0.wire_to(z0, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=neg_scable_cfg)

set up update rules and make relevant edges aware of these
z2_mu1.set_update_rule(preact=(z2,"phi(z)"), postact=(e1,"phi(z)"), param=["A"])
z1_mu0.set_update_rule(preact=(z1,"phi(z)"), postact=(e0,"phi(z)"), param=["A"])

Set up graph - execution cycle/order
model = NGCGraph(K=K)
model.set_cycle(nodes=[z2,z1,z0])
model.set_cycle(nodes=[mu1,mu0])
model.set_cycle(nodes=[e1,e0])
model.apply_constraints()
model.compile(batch_size=batch_size)

which constructs the model the three-layer system, which we can also depict with
the following ngc-learn design shorthand:

Node Name Structure:
z2 -(z2-mu1)-> mu1 ;e1; z1 -(z1-mu0-)-> mu0 ;e0; z0

One interesting thing to note is that, in the sim_dyn_train.py script, we also
create an ancestral projection graph (or a co-model) in order to conduct the
sampling we want to do after training. An ancestral projection graph ProjectionGraph
(see ProjectionGraph), which is
useful for doing things like ancestral sampling from a directed generative model,
should generally be created after an NGCGraph object has been instantiated.
Doing so, as seen in sim_dyn_train.py, entails writing the following:

build an ancestral sampling graph
z2_dim = model.getNode("z2").dim
z1_dim = model.getNode("z1").dim
z0_dim = model.getNode("z0").dim
Set up complementary sampling graph to use in conjunction w/ NGC-graph
s2 = FNode(name="s2", dim=z2_dim, act_fx="identity")
s1 = FNode(name="s1", dim=z1_dim, act_fx="elu")
s0 = FNode(name="s0", dim=z0_dim, act_fx="identity")
s2_s1 = s2.wire_to(s1, src_comp="phi(z)", dest_comp="dz", mirror_path_kernel=(z2_mu1,"A"))
s1_s0 = s1.wire_to(s0, src_comp="phi(z)", dest_comp="dz", mirror_path_kernel=(z1_mu0,"A"))
sampler = ProjectionGraph()
sampler.set_cycle(nodes=[s2,s1,s0])
sampler.compile()

Creating a ProjectionGraph is rather similar to creating an NGCGraph (notice
that we chose to use FNode(s) since they work well for feedforward projection schemes).
However, we should caution that the design of a projection graph should meaningfully mimic
what one would envision is the underlying directed, acyclic generative model embodied

by their NGCGraph (it helps to draw out/visualize the dot-and-arrow structure you
want graphically first, using similar shorthand as we presented for our model above,
in order to then extract the underlying generative model the system implicitly learns).
A few important points we followed for designing the projection graph above:

	the number (dimensionality) of nodes should be the same as the state nodes in the NGC system,
i.e., s2 corresponds to z2, s1 corresponds to z1, and s0 corresponds to z0;

	the cables connecting the nodes should directly share the exact synaptic matrices
between each key layer of the original NGC system, i.e., the cable s2_s1 points
directly to/re-uses cable z2_mu1 and cable s1_s0 points
directly to/re-uses cable z1_mu0 (note that we use the special argument A in the
wire_to() function that allows directly shallow-copying/linking between relevant cables).
Notice that we used another one of the NGCGraph utility functions – getNode() –
which directly extracts a whole Node object from the graph, allowing one to
quickly call its internal data members such as its dimensionality .dim.

With the above NGCGraph and ProjectionGraph now created, we can now train
our model by sampling the MoG data generator online as follows:

ToD = 0.0
Lx = 0.0
Ns = 0.0
alpha = 0.99 # fading factor
for iter in range(n_iterations):

 x, y = process.sample(n_s=batch_size)
 Ns = x.shape[0] + Ns * alpha

 # conduct iterative inference & update NGC system
 readouts, delta = model.settle(
 clamped_vars=[("z0","z",x)],
 readout_vars=[("mu0","phi(z)"),("mu1","phi(z)")]
)
 x_hat = readouts[0][2]

 ToD = calc_ToD(model) + ToD * alpha # calc ToD
 Lx = tf.reduce_sum(metric.mse(x_hat, x)) + Lx * alpha
 # update synaptic parameters given current model internal state
 for p in range(len(delta)):
 delta[p] = delta[p] * (1.0/(x.shape[0] * 1.0))
 opt.apply_gradients(zip(delta, model.theta))
 model.apply_constraints()
 model.clear()

 print("\r{} | ToD = {} MSE = {}".format(iter, ToD/Ns, Lx/Ns), end="")
print()

where we track the total discrepancy (via a custom calc_ToD() also written for
you in sim_dyn_train.py, much as we did in Demonstration # 1) as well as the
mean squared error (MSE). Notably, for online streams, we track a particularly
useful form of both metrics – prequential MSE and prequential ToD – which are
essentially adaptations of the prequential error measurement [1] used to track
the online performance of classifiers/regressors on data streams. We will
plot the prequential ToD at the end of our simulation script, which will yield a plot
that should look similar to (where we see that ToD is maximized over time):

[image: ../_images/tod_curve.jpg]
Finally, after training, we will examine how well our NGC system learned to
mimic the MoG by using the co-model projection graph we created earlier.
This time, our basic process for sampling from the NGC model is simpler than
in Demonstration # 1 where we had to learn a density estimator to serve as our
model’s prior. In this demonstration, we will approximate the modes of
our NGC’s model’s prior by feeding in batches of test samples drawn from the
MoG process, about 64 samples per component, running them through the NGCGraph
to infer the latent z2 for each sample, estimate the latent mean and covariance
for mode, and then use these latent codes to sample from and project through
our ProjectionGraph. This will get us our system’s fantasized samples
from which we can estimate the generative model’s mean and
covariance for each pool, allowing us visually compare to the actual mean and covariance
of each component of the MoG process.
This we have done for you in the sample_system() routine, shown below:

def sample_system(Xs, model, sampler, Ns=-1):
 readouts, _ = model.settle(
 clamped_vars=[("z0","z",tf.cast(Xs,dtype=tf.float32))],
 readout_vars=[("mu0","phi(z)"),("z2","z")],
 calc_delta=False
)
 z2 = readouts[1][2]
 z = z2
 model.clear()
 # estimate latent mode mean and covariance
 z_mu = tf.reduce_mean(z2, axis=0, keepdims=True)
 z_cov = stat.calc_covariance(z2, mu_=z_mu, bias=False)
 z_R = tf.linalg.cholesky(z_cov) # decompose covariance via Cholesky
 if Ns > 0:
 eps = tf.random.normal([Ns, z2.shape[1]], mean=0.0, stddev=1.0, seed=69)
 else:
 eps = tf.random.normal(z2.shape, mean=0.0, stddev=1.0, seed=69)
 # use the re-parameterization trick to sample this mode
 Zs = z_mu + tf.matmul(eps,z_R)
 # now conduct ancestral sampling through the directed generative model
 readouts = sampler.project(
 clamped_vars=[("s2","z", Zs)],
 readout_vars=[("s0","phi(z)")]
)
 X_hat = readouts[0][2]
 sampler.clear()
 # estimate the mean and covariance of the sensory sample space of this mode
 mu_hat = tf.reduce_mean(X_hat, axis=0, keepdims=True)
 sigma_hat = stat.calc_covariance(X_hat, mu_=mu_hat, bias=False)
 return (X_hat, mu_hat, sigma_hat), (z, z_mu, z_cov)

Note inside the sim_dyn_train.py script, we have also written several helper functions
for plotting the latent variables, input space samples, and the data generator and
model-estimated input means/covariances. We have set the number of training iterations
to be 400 and the online mini-batch size to be 32 (meaning that we draw 32 samples
from the MoG each iteration).

You can now execute the demonstration script as follows:

$ python sim_dyn_train.py

and you will see that our exponential linear model produces the following samples:

[image: ../_images/model_samples.jpg]
and results in the following fit (Right) as compared to the original MoG process (Left):

	Original Process

	NGC Model Fit

	[image:]

	[image:]

We observe that the NGC model does a decent job of learning to mimic the underlying
data generating process, although we can see it is not perfect as a few data points
are not quite captured within its covariance envelope (notably in the orange
Gaussian blob in the top right of the plot).

Finally, we visualize our model’s latent space to see how the 2D codes clustered up
and obtain the plot below:

[image: ../_images/model_latents.jpg]
Desirably, we observe that our latent codes have clustered together and yielded a
sufficiently separable latent space (in other words, the codes result in
distinct modes where each mode of the MoG is represented a specific blob/grouping
in latent space.).

As a result, we have successfully learned to mimic a synthetic mixture of Gaussians data
generating process with our custom, nonlinear NGC system.

References

[1] Gama, Joao, Raquel Sebastiao, and Pedro Pereira Rodrigues. “On evaluating
stream learning algorithms.” Machine learning 90.3 (2013): 317-346.

 Walkthrough 3: Creating an NGC Classifier

Walkthrough 3: Creating an NGC Classifier

In this demonstration, we will learn how to create a classifier based on NGC.
After going through this demonstration, you will:

	Learn how to use a simple projection graph as well as the extract() and
inject() routines to initialize the simulated settling process of an NGC model.

	Craft and simulate an NGC model that can directly classify the image
patterns in the MNIST database (from Demonstration # 1), producing results
comparable to what was reported in (Whittington & Bogacz, 2017).

Note that the folders of interest to this demonstration are:

	walkthroughs/demo3/: this contains the necessary simulation script

	walkthroughs/data/: this contains the zipped copy of the MNIST database arrays

Using an Ancestral Projection Graph to Initialize the Settling Process

We will start by first discussing an important use-case of the ProjectionGraph –
to initialize the simulated iterative inference process of an NGCGraph. This is
contrast to the use-case we saw in the last two walkthroughs where we used the
ancestral projection graph as a post-training tool, which allowed us to draw
samples from the underlying directed generative models we were fitting. This time,
we will leverage the power of an ancestral projection graph to serve as a
simple, progressively improving model of initial conditions for an iterative inference
process.

To illustrate the above use-case, we will focus on crafting an NGC model for
discriminative learning (as opposed to the generative learning models we built
Walkthroughs # 1 and #2). Before working with a concrete application, as we
will do in the next section, let us just focus on crafting the NGC architecture
of the classifier as well as its ancestral projection graph.

Working with nodes and cables (see the last demonstration for details),
we will build a simple hierarchical system that adheres to the following NGC shorthand:

Node Name Structure:
z2 -(z2-mu1)-> mu1 ;e1; z1 -(z1-mu0-)-> mu0 ;e0; z0
Note that z3 = x and z0 = y, which yields a classifier

where we see will design an NGC predictive processing model that contains three
state layers z0, z1, and z2 with the special application-specific usage
that, during training, z0 will be clamped to a label vector y (a one-hot encoding
of a single category out of a finite set – 1-of-C encoding, where C is the number of classes)
and z2 will be clamped to a sensory input vector x.
Building the above NGC system entails writing the following:

batch_size = 128
x_dim = # dimensionality of input space
y_dim = # dimensionality of output/target space
beta = 0.1
leak = 0.0
integrate_cfg = {"integrate_type" : "euler", "use_dfx" : True}
set up system nodes
z2 = SNode(name="z2", dim=x_dim, beta=beta, leak=leak, act_fx="identity",
 integrate_kernel=integrate_cfg)
mu1 = SNode(name="mu1", dim=z_dim, act_fx="identity", zeta=0.0)
e1 = ENode(name="e1", dim=z_dim)
z1 = SNode(name="z1", dim=z_dim, beta=beta, leak=leak, act_fx="relu6",
 integrate_kernel=integrate_cfg)
mu0 = SNode(name="mu0", dim=y_dim, act_fx="softmax", zeta=0.0)
e0 = ENode(name="e0", dim=y_dim)
z0 = SNode(name="z0", dim=y_dim, beta=beta, integrate_kernel=integrate_cfg, leak=0.0)

create cable wiring scheme relating nodes to one another
wght_sd = 0.02
init_kernels = {"A_init" : ("gaussian",wght_sd), "b_init" : ("zeros")}
dcable_cfg = {"type": "dense", "init_kernels" : init_kernels, "seed" : 1234}
pos_scable_cfg = {"type": "simple", "coeff": 1.0} # a positive cable
neg_scable_cfg = {"type": "simple", "coeff": -1.0} # a negative cable

z2_mu1 = z2.wire_to(mu1, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=dcable_cfg)
mu1.wire_to(e1, src_comp="phi(z)", dest_comp="pred_mu", cable_kernel=pos_scable_cfg)
z1.wire_to(e1, src_comp="z", dest_comp="pred_targ", cable_kernel=pos_scable_cfg)
e1.wire_to(z2, src_comp="phi(z)", dest_comp="dz_bu", mirror_path_kernel=(z2_mu1,"A^T"))
e1.wire_to(z1, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=neg_scable_cfg)

z1_mu0 = z1.wire_to(mu0, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=dcable_cfg)
mu0.wire_to(e0, src_comp="phi(z)", dest_comp="pred_mu", cable_kernel=pos_scable_cfg)
z0.wire_to(e0, src_comp="phi(z)", dest_comp="pred_targ", cable_kernel=pos_scable_cfg)
e0.wire_to(z1, src_comp="phi(z)", dest_comp="dz_bu", mirror_path_kernel=(z1_mu0,"A^T"))
e0.wire_to(z0, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=neg_scable_cfg)

set up update rules and make relevant edges aware of these
z2_mu1.set_update_rule(preact=(z2,"phi(z)"), postact=(e1,"phi(z)"), param=["A","b"])
z1_mu0.set_update_rule(preact=(z1,"phi(z)"), postact=(e0,"phi(z)"), param=["A","b"])

Set up graph - execution cycle/order
model = NGCGraph(K=5)
model.set_cycle(nodes=[z2,z1,z0])
model.set_cycle(nodes=[mu1,mu0])
model.set_cycle(nodes=[e1,e0])
model.compile(batch_size=batch_size)

noting that x_dim and y_dim would be determined by your input dataset’s
sensory input design matrix X and its corresponding label design matrix Y.
Also notice that, in our classifier above, because we will generally be clamping
an input data vector (or batch of them) to z2, we chose to encode an identity
activation function for that node (we do not want to arbitrarily apply a nonlinear
transform to the input). The activation function of the output prediction node
mu0 (which will attempt to predict the value of data clamped at z0, i.e., the
“label node”) has been set to be the softmax which will induce a soft form of
competition among the neurons in mu0 and allow our NGC classifier to produce
probability distribution vectors in its output.

The architecture above could then be readily simulated assuming that we always
have an x and a y to clamp to its z2 and z0 nodes. While it is possible
to then run the same system in the absence of a y (as in test-time inference),
we would have to simulate the NGC system for a reasonable number of steps (which
might be greater than the number of steps K chosen to facilitate learning) or
until convergence to a fixed-point (or stable attractor). While this approach is
fine in principle, it would be ideal for downstream application use if we could
leverage the underlying directed generative model that the above architecture embodies.
Specifically, even though we crafted our model with discriminative learning as our goal,
the above system is still learning, “under the hood”, a generative model, specifically
a conditional generative model of the form p(y|x). Given this insight, we can
take advantage of the fact that ancestral sampling through our model is still possible, just
with the exception that our input samples do not need to come from a prior distribution
(as in the case of the models in Walkthroughs # 1 and # 2) but instead from
data patterns directly.

To build the corresponding ancestral projection graph for the architecture above,
we would then (adhering to our NGC shorthand and ensuring this co-model graph
follows the information flow through our NGC system – a design principle/heuristic we
discussed in Demonstration # 2) write the following:

build this NGC model's sampling graph
z2_dim = ngc_model.getNode("z2").dim
z1_dim = ngc_model.getNode("z1").dim
z0_dim = ngc_model.getNode("z0").dim
Set up complementary sampling graph to use in conjunction w/ NGC-graph
s2 = FNode(name="s2", dim=z2_dim, act_fx="identity")
s1 = FNode(name="s1", dim=z1_dim, act_fx=act_fx)
s0 = FNode(name="s0", dim=z0_dim, act_fx=out_fx)
s2_s1 = s2.wire_to(s1, src_comp="phi(z)", dest_comp="dz", mirror_path_kernel=(z2_mu1,"A"))
s1_s0 = s1.wire_to(s0, src_comp="phi(z)", dest_comp="dz", mirror_path_kernel=(z1_mu0,"A"))
sampler = ProjectionGraph()
sampler.set_cycle(nodes=[s2,s1,s0])
sampler.compile()

which explicitly instantiates the conditional generative embodied by the NGC
system we built earlier, allowing us to easily sample from it. If one wanted
NGC shorthand for the above conditional generative model, it would be:

Node Name Structure:
s2 -(s2-s1)-> s1 -(s1-s0-)-> s0
Note: s3 = x, which yields the model p(s0=y|x)
Note: s2-s1 = z2-mu1 and s1-s0 = z1-mu0

where we have highlighted that we are sharing (or shallow copying) the exact
synaptic connections (z2-mu1 and z1-mu0) from the NGC system above into those
of our directed generative model (s2-s1 and s1-s0). Note that, after training
the earlier NGC system on a database of images and their respective labels, we
could then classify, at test-time, each unseen pattern using the conditional
generative model directly (instead of the settling process of the original NGC system),
like so:

y = # test label/batch sampled from the test-set
x = # test data point/batch sampled from the test-set
readouts = sampler.project(
 clamped_vars=[("s2","z",x)],
 readout_vars=[("s0","phi(z)")]
)
y_hat = readouts[0][2] # get probability distribution p(y|x)

Given our ancestral projection graph, we can now revisit our original goal
of improving our NGC system’s learning process by tying together it
back with the simulation system itself. To do so, all we need to do
is make use of two functions, i.e., extract() and inject(), provided by
both the ProjectionGraph and NGCGraph objects. Tying together the two objects
would then work as follows (below we emulate one step of online learning):

y = # test label/batch sampled from the test-set
x = # test data point/batch sampled from the test-set

first, run the projection graph
readouts = sampler.project(
 clamped_vars=[("s2","z",x)],
 readout_vars=[("s0","phi(z)")]
)

second, extract data from the ancestral projection graph
s2 = sampler.extract("s2","z")
s1 = sampler.extract("s1","z")
s0 = sampler.extract("s0","z")

third, initialize the simulated NGC system with the above information
model.inject([("mu1", "z", s1), ("z1", "z", s1), ("mu0", "z", s0)])

finally, run/simulate the NGC system as normal
readouts, delta = model.settle(
 clamped_vars=[("z2","z",x),("z0","z",y)],
 readout_vars=[("mu0","phi(z)"),("mu1","phi(z)")]
)
y_hat = readouts[0][2]
for p in range(len(delta)):
 delta[p] = delta[p] * (1.0/(x.shape[0] * 1.0))
opt.apply_gradients(zip(delta, model.theta))
model.clear()
sampler.clear()

where we see that, after we first run the ancestral projection graph, we then
extract the internal values from the s1 and s0 nodes (from their z compartments)
and inject these into the relevant spots inside the NGC system, i.e., we place the
reading in the z compartment of s1 into the z compartment of mu1 and z1
(since we don’t want the error neuron e1 to find any mismatch in the first time step
of the settling process of model) and the z compartment of s0 into the z
compartment of mu0 (to ensure that, since we will be clamping y to the z
compartment of z0, we want the mismatch signal simulated to be the different
between bottom layer prediction mu0 and the label at the very first time step
of the settling process of model).
In short, we just want the initial conditions of the settling process for model
to be such that its state z1 matches the expectation mu1 of z2 (clamped to x)
and the expectation mu0 of z1 is being initially compared to the state of z0
(clamped to the label y).
Note that when values are “injected” into a NGC system through inject(), they will
not persist after the first step of its settling process – they will evolve
according to its current node dynamics. If you did not want a node to evolve at all
remain fixed at the value you embed/insert, then you would use the clamp() function
instead (which is what is being used internally to clamp variables in the clamped_vars
argument of the settle() function above).

In the figure below, we graphically what the above simulated NGC system and its
corresponding conditional generative model (ancestral projection graph) look like
(the blue dashed arrow just point outs that the layer s1 of the generative model
is the same thing as the mean prediction mu1 of the original NGC model).

[image: ../_images/ngclearn_demo3_arch.png]
The three-layer hierarchical classifier above turns out to be very similar to the
one implemented in ngc-learn’s Model Museum – the GNCN-t1-FFM,
which is itself a four-layer discriminative NGC system that emulates the model investigated
in [1]. We will import and use this slightly deeper model in the next part of this
demonstration.

Learning a Classifier

Now that we have seen how to design an NGC classifier and build a projection graph
that allows us to directly use the underlying conditional generative model of p(y|x),

we have a powerful means to initialize our system’s internal nodes to something
meaningful and task-specific (instead of the default zero-vector initialization) as
well as a fast label prediction model as an important by-product of the discriminative
learning that our code will be doing. Having a fast model for test-time inference
is useful not only for quickly tracking generalization ability throughout training
(using a validation subset of data points) but also for downstream uses of the
learning generative model – for example, one could extract the synaptic weight
matrices inside the ancestral projection graph, serialize them to disk, and place
them inside a multi-layer perceptron structure with the same layer sizes/architecture
built pure Tensorflow or Pytorch.

Specifically, we will fit a supervised NGC classifier using the labels that come
with the processed MNIST dataset, in mnist.zip (which you unzipped and worked
with in Demonstration # 1).
For this part of the demonstration, we will import the full model of [1], You will
notice in the provided training script sim_train.py, we import the GNCN-t1-FFM
(the NGC classifier model) in the header:

from ngclearn.museum.gncn_t1_ffm import GNCN_t1_FFM

which is initialized as later in the code as:

args = # ...the Config object loaded in earlier...

agent = GNCN_t1_FFM(args) # set up NGC model

and then proceed to write/design a training process very similar in design to
the one we wrote in Demonstration # 1. The key notable differences are now that
we are:

	using labels along with the input sensory samples, meaning we need to tell
the DataLoader management object that there is a label design matrix to sample
that maps one-to-one with the image design matrix, like so:

xfname = # ...the design matrix X file name loaded in earlier...
yfname = # ...the design matrix Y file name loaded in earlier...
args = # ...the Config object loaded in earlier...
batch_size = # ... number of samples to draw from the loader per training step ...

load data into memory
X = (tf.cast(np.load(xfname),dtype=tf.float32)).numpy()
x_dim = X.shape[1]
args.setArg("x_dim",x_dim) # set the config object "args" to know of the dimensionality of x
Y = (tf.cast(np.load(yfname),dtype=tf.float32)).numpy()
y_dim = Y.shape[1]
args.setArg("y_dim",y_dim) # set the config object "args" to know of the dimensionality of y
build the training set data loader
train_set = DataLoader(design_matrices=[("z3",X),("z0",Y)], batch_size=batch_size)

	we are now using the NGC model’s ancestral projection graph to make label predictions
in our eval_model() function and we now globally track Acc instead of ToD (since
the projection graph does not have a total discrepancy quantity that we can measure)
as well as Ly (the Categorical cross entropy of our model’s label probabilities)
instead of Lx. This is done (in eval_model()) as follows:

x = # ... image/batch drawn from data loader ...
y = # ... label/batch drawn from data loader ...

y_hat = agent.predict(x)

update/track fixed-point losses
Ly = tf.reduce_sum(metric.cat_nll(y_hat, y)) + Ly

compute number of correct predictions in batch
y_ind = tf.cast(tf.argmax(y,1),dtype=tf.int32)
y_pred = tf.cast(tf.argmax(y_hat,1),dtype=tf.int32)
comp = tf.cast(tf.equal(y_pred,y_ind),dtype=tf.float32)
Acc += tf.reduce_sum(comp) # update/track overall accuracy

	we finally tie together the ancestral projection graph with the NGC classifier’s
settling process during training. This is done through the code snippet below:

x = # ... image/batch drawn from data loader ...
y = # ... label/batch drawn from data loader ...

run ancestral projection to get initial conditions
y_hat_ = agent.predict(x) # run p(y|x)
mu1 = agent.ngc_sampler.extract("s1","z") # extract value of s1
mu0 = agent.ngc_sampler.extract("s0","z") # extract value of s0

set initial conditions for NGC system
agent.ngc_model.inject([("mu1", "z", mu1), ("z1", "z", mu1), ("mu0", "z", mu0)])

conduct iterative inference/setting as normal
y_hat = agent.settle(x, y)
ToD_t = calc_ToD(agent) # calculate total discrepancy
Ly = tf.reduce_sum(metric.cat_nll(y_hat, y)) + Ly

update synaptic parameters given current model internal state
delta = agent.calc_updates()
opt.apply_gradients(zip(delta, agent.ngc_model.theta))
agent.ngc_model.apply_constraints()
agent.clear()

To train your NGC classifier, run the training script in /walkthroughs/demo3/ as
follows:

$ python sim_train.py --config=gncn_t1_ffm/fit.cfg --gpu_id=0 --n_trials=1

which will execute a training process using the experimental configuration file
/walkthroughs/demo3/gncn_t1_ffm/fit.cfg written for you. After your model finishes
training you should see a validation score similar to the one below:

[image: ../_images/valid_acc_output.png]
You will also notice that in your folder /walkthroughs/demo3/gncn_t1_ffm/ several
arrays as well as your learned NGC classifier have been saved to disk for you.
To examine the classifier’s performance on the MNIST test-set, you can execute
the evaluation script like so:

$ python eval_model.py --config=gncn_t1_ffm/fit.cfg --gpu_id=0

which should result in an output similar to the one below:

[image: ../_images/test_acc_output.png]
Desirably, our out-of-sample results on both the validation and
test-set corroborate the measurements reported in (Whittington & Bogacz, 2017) [1],
i.e., a range of 1.7-1.8% validation error was reported and our
simulation yields a validation accuracy of 0.9832 * 100 = 98.32% (or 1.68% error)
and a test accuracy of 0.98099 * 100 = 98.0899% (or about 1.91% error),
even though our predictive processing classifier/set-up differs in a few small ways:

	we induce soft competition in the label prediction mu0 with the softmax
(whereas they used the identity function and softened the label vectors through
clipping),

	we work directly with the normalized pixel data whereas [1] transforms the
data with an inverse logistic transform (you can find this function implemented
as inverse_logistic() in ngclearn.utils.transform_utils), and

	they initialize their weights using a scheme based on the Uniform distribution
(or the classic_glorot scheme in ngclearn.utils.transform_utils).
(Note that you can modify the scripts sim_train.py, fit.cfg, and eval_model.py
to incorporate these changes and obtain similar results under the same conditions.)

Finally, since we have collected our training and validation accuracy measurements
at the end of each pass through the data (or epoch/iteration), we can run the
following to obtain a plot of our model’s learning curves:

$ python plot_curves.py

which, internally, has been hard-coded to point to the local directory
walkthroughs/demo3/gncn_t1_ffm/ containing the relevant measurements/numpy arrays.
Doing so should result in a plot that looks similar to the one below:

[image: ../_images/mnist_learning_curves.jpg]
As observed in the plot above, this NGC overfits the training sample perfectly (reaching a
training error 0.0%) as indicated by the fact that the blue validation
V-Acc curve is a bit higher than the red Acc learning curve (which itself
converges to and remains at perfect training accuracy). Note that these
reported accuracy measurements come from the ancestral projection graph we used
to initialize the settling process of the discriminative NGC system, meaning
that we can readily deploy the projection graph itself as a direct probabilistic
model of p(y|x).

References

[1] Whittington, James CR, and Rafal Bogacz. “An approximation of the error
backpropagation algorithm in a predictive coding network with local hebbian
synaptic plasticity.” Neural computation 29.5 (2017): 1229-1262.

 Walkthrough 4: Sparse Coding

Walkthrough 4: Sparse Coding

In this demonstration, we will learn how to create, simulate, and visualize the
internally acquired filters/atoms of variants of a sparse coding system based
on the classical model proposed by (Olshausen & Field, 1996) [1].
After going through this demonstration, you will:

	Learn how to build a 2-layer NGC sparse coding model of natural image patterns,
using the original dataset used in [1].

	Visualize the acquired filters of the learned dictionary models and examine
the results of imposing a kurtotic prior as well as a thresholding function
over latent codes.

Note that the folders of interest to this demonstration are:

	walkthroughs/demo4/: this contains the necessary simulation scripts

	walkthroughs/data/: this contains the zipped copy of the natural image arrays

On Dictionary Learning

Dictionary learning poses a very interesting question for statistical learning:
can we extract “feature detectors” from a given database (or collection of patterns)
such that only a few of these detectors play a role in reconstructing any given,
original pattern/data point?
The aim of dictionary learning is to acquire or learn a matrix, also called the
“dictionary”, which is meant to contain “atoms” or basic elements inside this dictionary
(such as simple fundamental features such as the basic strokes/curves/edges
that compose handwritten digits or characters). Several atoms (or rows of this
matrix) inside the dictionary can then be linearly combined to reconstruct a
given input signal or pattern. A sparse dictionary model is able to reconstruct
input patterns with as few of these atoms as possible. Typical sparse dictionary
or coding models work with an over-complete spanning set, or, in other words,
a latent dimensionality (which one could think of as the number of neurons
in a single latent state node of an NGC system) that is greater than the
dimensionality of the input itself.

From a neurobiological standpoint, sparse coding emulates a fundamental property
of neural populations – the activities among a neural population are sparse where,
within a period of time, the number of total active neurons (those that are firing)
is smaller than the total number of neurons in the population itself. When sensory
inputs are encoded within this population, different subsets (which might overlap) of
neurons activate to represent different inputs (one way to view this is that they
“fight” or compete for the right to activate in response to different stimuli).
Classically, it was shown in [1] that a sparse coding model trained on natural
image patches learned within its dictionary non-orthogonal filters that resembled
receptive fields of simple-cells (found in the visual cortex).

Constructing a Sparse Coding System

To build a sparse coding model, we can, as we have in the previous three
walkthroughs, manually craft one using nodes and cables. First, let us specify
the underlying generative model we aim to emulate.
In NGC shorthand, this means that we seek to build:

Node Name Structure:
p(z1) ; z1 -(z1-mu0-)-> mu0 ;e0; z0
Note: Cauchy prior applied for p(z1)

Furthermore, we further specify underlying directed generative model
(in accordance with the methodology in Demonstration #3) as follows:

Node Name Structure:
s1 -(s1-s0-)-> s0
Note: s1 ~ p(s1), where p(s1) is the prior over s1
Note: s1-s0 = z1-mu0

where we see that we aim to learn a two-layer generative system that specifically
imposes a prior distribution p(z1) over the latent feature detectors that we hope
to extract in node z1. Note that this two-layer model (or single latent-variable layer
model) could either be the linear generative model from [1] or one similar to the
model learned through ISTA [2] if a (soft) thresholding function is used instead.

Constructing the above system for (Olshausen & Field, 1996) is done,
using nodes and cables, as follows:

x_dim = # ... dimension of patch data ...
---- build a sparse coding linear generative model with a Cauchy prior ----
K = 300
beta = 0.05
general model configurations
integrate_cfg = {"integrate_type" : "euler", "use_dfx" : True}
prior_cfg = {"prior_type" : "cauchy", "lambda" : 0.14} # configure latent prior
cable configurations
init_kernels = {"A_init" : ("unif_scale",1.0)}
dcable_cfg = {"type": "dense", "init_kernels" : init_kernels, "seed" : seed}
pos_scable_cfg = {"type": "simple", "coeff": 1.0}
neg_scable_cfg = {"type": "simple", "coeff": -1.0}
constraint_cfg = {"clip_type":"forced_norm_clip","clip_mag":1.0,"clip_axis":1}

set up system nodes
z1 = SNode(name="z1", dim=100, beta=beta, leak=leak, act_fx=act_fx,
 integrate_kernel=integrate_cfg, prior_kernel=prior_cfg)
mu0 = SNode(name="mu0", dim=x_dim, act_fx=out_fx, zeta=0.0)
e0 = ENode(name="e0", dim=x_dim)
z0 = SNode(name="z0", dim=x_dim, beta=beta, integrate_kernel=integrate_cfg, leak=0.0)

create the rest of the cable wiring scheme
z1_mu0 = z1.wire_to(mu0, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=dcable_cfg)
z1_mu0.set_constraint(constraint_cfg)
mu0.wire_to(e0, src_comp="phi(z)", dest_comp="pred_mu", cable_kernel=pos_scable_cfg)
z0.wire_to(e0, src_comp="phi(z)", dest_comp="pred_targ", cable_kernel=pos_scable_cfg)
e0.wire_to(z1, src_comp="phi(z)", dest_comp="dz_bu", mirror_path_kernel=(z1_mu0,"symm_tied"))
e0.wire_to(z0, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=neg_scable_cfg)
z1_mu0.set_update_rule(preact=(z1,"phi(z)"), postact=(e0,"phi(z)"), param=["A"])
param_axis = 1

Set up graph - execution cycle/order
model = NGCGraph(K=K, name="gncn_t1_sc", batch_size=batch_size)
model.set_cycle(nodes=[z1,z0])
model.set_cycle(nodes=[mu0])
model.set_cycle(nodes=[e0])
model.compile()

while building its ancestral sampling co-model is done with the following code block:

build this NGC model's sampling graph
z1_dim = ngc_model.getNode("z1").dim
z0_dim = ngc_model.getNode("z0").dim
s1 = FNode(name="s1", dim=z1_dim, act_fx=act_fx)
s0 = FNode(name="s0", dim=z0_dim, act_fx=out_fx)
s1_s0 = s1.wire_to(s0, src_comp="phi(z)", dest_comp="dz", mirror_path_kernel=(z1_mu0,"tied"))
sampler = ProjectionGraph()
sampler.set_cycle(nodes=[s1,s0])
sampler.compile()

Notice that we have, in our NGCGraph, taken care to set the .param_axis
variable to be equal to 1 – this will, whenever we call apply_constraints(),
tell the NGC system to normalize the Euclidean norm of the columns
of each generative/forward matrix to be equal to .proj_weight_mag (which we set
to the typical value of 1). This is a particularly important constraint to apply
to sparse coding models as this prevents the trivial solution of simply growing out
the magnitude of the dictionary synapses to solve the underlying constrained
optimization problem (and, in general, constraining the rows or
columns of NGC generative models helps to facilitate a more stable training process).

To build the version of our model using a thresholding function
(instead of using a factorial prior over the latents), we can write the following:

x_dim = # ... dimension of image data ...
K = 300
beta = 0.05
general model configurations
integrate_cfg = {"integrate_type" : "euler", "use_dfx" : True}
configure latent threshold function
thr_cfg = {"threshold_type" : "soft_threshold", "thr_lambda" : 5e-3}
cable configurations
dcable_cfg = {"type": "dense", "init" : ("unif_scale",1.0), "seed" : seed}
pos_scable_cfg = {"type": "simple", "coeff": 1.0}
neg_scable_cfg = {"type": "simple", "coeff": -1.0}
constraint_cfg = {"clip_type":"forced_norm_clip","clip_mag":1.0,"clip_axis":1}

set up system nodes
z1 = SNode(name="z1", dim=100, beta=beta, leak=leak, act_fx=act_fx,
 integrate_kernel=integrate_cfg, threshold_kernel=thr_cfg)
mu0 = SNode(name="mu0", dim=x_dim, act_fx=out_fx, zeta=0.0)
e0 = ENode(name="e0", dim=x_dim)
z0 = SNode(name="z0", dim=x_dim, beta=beta, integrate_kernel=integrate_cfg, leak=0.0)

create the rest of the cable wiring scheme
z1_mu0 = z1.wire_to(mu0, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=dcable_cfg)
z1_mu0.set_constraint(constraint_cfg)
mu0.wire_to(e0, src_comp="phi(z)", dest_comp="pred_mu", cable_kernel=pos_scable_cfg)
z0.wire_to(e0, src_comp="phi(z)", dest_comp="pred_targ", cable_kernel=pos_scable_cfg)
e0.wire_to(z1, src_comp="phi(z)", dest_comp="dz_bu", mirror_path_kernel=(z1_mu0,"symm_tied"))
e0.wire_to(z0, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=neg_scable_cfg)
z1_mu0.set_update_rule(preact=(z1,"phi(z)"), postact=(e0,"phi(z)"), param=["A"])

Set up graph - execution cycle/order
model = NGCGraph(K=K, name="gncn_t1_sc", batch_size=batch_size)
model.set_cycle(nodes=[z1,z0])
model.set_cycle(nodes=[mu0])
model.set_cycle(nodes=[e0])
model.compile()

Note that the ancestral projection this model using thresholding would be the same
as the one we built earlier.
Notably, the above models can also be imported from the Model Museum,
specifically using GNCN-t1/SC, which
internally implements the NGCGraph(s) depicted above.

Finally, for both the first model (which emulates [1]) and the second model
(which emulates [2]), we should define their total discrepancy (ToD) measurement
functions so we can track their performance throughout simulation:

def calc_ToD(agent, lmda):
 """Measures the total discrepancy (ToD), or negative energy, of an NGC system"""
 z1 = agent.ngc_model.extract(node_name="z1", node_var_name="z")
 e0 = agent.ngc_model.extract(node_name="e0", node_var_name="phi(z)")
 z1_sparsity = tf.reduce_sum(tf.math.abs(z1)) * lmda # sparsity penalty term
 L0 = tf.reduce_sum(tf.math.square(e0)) # reconstruction term
 ToD = -(L0 + z1_sparsity)
 return float(ToD)

In fact, the above total discrepancy, in the case of a sparse coding model,
measures the negative of its underlying energy function, which is simply the
sum of its reconstruction error (or the sum of the square of the NGC
system’s sensory error neurons e0) and the sparsity of its single latent state
layer z1.

Learning Latent Feature Detectors

We will now simulate the learning of the feature detectors using the two
sparse coding models that we have built above. The code provided in
sim_train.py in /walkthroughs/demo4/ will execute a simulation of the above
two models on the natural images found in walkthroughs/data/natural_scenes.zip),
which is a dataset composed of several images of the American Northwest.

First, navigate to the walkthroughs/ directory to access the example/demonstration
code and further enter the walkthroughs/data/ sub-folder. Unzip the file
natural_scenes.zip to create one more sub-folder that contains two numpy arrays,
the first labeled natural_scenes/raw_dataX.npy and another labeled as
natural_scenes/dataX.npy. The first one contains the original, 512 x 512 raw pixel
image arrays (flattened) while the second contains the pre-processed, whitened/normalized
(and flattened) image data arrays (these are the pre-processed image patterns used
in [1]). You will, in this demonstration, only be working with natural_scenes/dataX.npy.
Two (raw) images sampled from the original dataset (raw_dataX.npy) are shown below:

	

	

	[image:]

	[image:]

With the data unpacked and ready, we can now turn our attention to simulating the training process.
One way to write the training loop for our sparse coding models would be the following:

args = # load in Config object with user-defined arguments
args.setArg("batch_size",num_patches)
agent = GNCN_t1_SC(args) # set up NGC model
opt = tf.keras.optimizers.SGD(0.01) # set up optimization process

##
create a training loop
ToD, Lx = eval_model(agent, train_set, calc_ToD, verbose=True)
vToD, vLx = eval_model(agent, dev_set, calc_ToD, verbose=True)
print("{} | ToD = {} Lx = {} ; vToD = {} vLx = {}".format(-1, ToD, Lx, vToD, vLx))

##
mark = 0.0
for i in range(num_iter): # for each training iteration/epoch
 ToD = Lx = 0.0
 n_s = 0
 # run single epoch/pass/iteration through dataset
 ##
 for batch in train_set:
 x_name, x = batch[0]
 # generate patches on-the-fly for sample x
 x_p = generate_patch_set(x, patch_size, num_patches)
 x = x_p
 n_s += x.shape[0] # track num samples seen so far
 mark += 1

 x_hat = agent.settle(x) # conduct iterative inference
 ToD_t = calc_ToD(agent, lmda) # calc ToD

 ToD = ToD_t + ToD
 Lx = tf.reduce_sum(metric.mse(x_hat, x)) + Lx

 # update synaptic parameters given current model internal state
 delta = agent.calc_updates(avg_update=False)
 opt.apply_gradients(zip(delta, agent.ngc_model.theta))
 agent.ngc_model.apply_constraints()
 agent.clear()

 print("\r train.ToD {} Lx {} with {} samples seen (t = {})".format(
 (ToD/(n_s * 1.0)), (Lx/(n_s * 1.0)), n_s, (inf_time/mark)),
 end=""
)
 ##
 print()
 ToD = ToD / (n_s * 1.0)
 Lx = Lx / (n_s * 1.0)
 # evaluate generalization ability on dev set
 vToD, vLx = eval_model(agent, dev_set, calc_ToD)
 print("---")
 print("{} | ToD = {} Lx = {} ; vToD = {} vLx = {}".format(
 i, ToD, Lx, vToD, vLx)
)

notice that the training code above, which has also been integrated into
the provided sim_train.py demo file, looks very similar to how we trained our
generative models in Demonstration # 1.
In contrast to our earlier training loops, however, we have now written and
used patch creation function generate_patch_set() to sample image patches
of 16 x 16 pixels on-the-fly each time an image is sampled from the DataLoader.
Note that we have hard-coded this patch-shape, as well as the training batch_size = 1
(since mini-batches of data are supposed to contain multiple patches instead of images),
into sim_train.py in order to match the setting of [1].
As a result, the sparse coding training process consists of the following steps:

	sample a random image from the image design matrix inside of the DataLoader,

	generate a number of patches equal to num_patches = 250 (which we have also
hard-coded into sim_train.py), and

	feed this mini-batch of image patches to the NGC system to facilitate a learning step.

To train the first sparse coding model with the Cauchy factorial prior over z1,
run the following the script:

$ python sim_train.py --config=sc_cauchy/fit.cfg --gpu_id=0 --n_trials=1

which will train a GNCN-t1/SC (with a Cauchy prior) on 16 x 16 pixel patches
from the natural image dataset in [1]. After the simulation terminates, i.e., once
400 iterations/passes through the data have been made, you will notice in the
sc_cauchy/ sub-directory you have several useful files.
Among these files, what we want is the serialized, trained sparse coding
model model0.ngc. To extract and visualize the learned filters of this NGC model,
you then need to run the final script, viz_filters.py, as follows:

$ python viz_filters.py --model_fname=sc_cauchy/model0.ngc --output_dir=sc_cauchy/

which will iterate through your model’s dictionary atoms (stored within its
single synaptic weight matrix) and ultimately produce a visual plot of the filters
which should look like the one below:

[image: ../_images/sc_cauchy_filters.jpg]
Now re-run the simulation but use the sc_ista/fit.cfg configuration
instead, like so:

$ python sim_train.py --config=sc_ista/fit.cfg --gpu_id=0 --n_trials=1

and this will train your sparse coding using a latent soft-thresholding function
(emulating ISTA). After this simulated training process ends, again, like before,
run:

$ python viz_filters.py --model_fname=sc_ista/model0.ngc --output_dir=sc_ista/

and you should obtain a filter plot like the one below:

[image: ../_images/sc_ista_filters.jpg]
The filter plots, notably, visually indicate that the dictionary atoms in both
sparse coding systems learned to function as edge detectors, each tuned to
a particular position, orientation, and frequency. These learned feature detectors,
as discussed in [1], appear to behave similar to the primary visual area (V1)
neurons of the cerebral cortex in the brain. Although, in the end, the edge
detectors learned by both our models qualitatively appear to be similar,
we should note that the latent codes (when inferring them given sensory input)
for the model that used the thresholding function are ultimately sparser.
Furthermore, the filters for the model with thresholding appear to smoother
and with fewer occurrences of less-than-useful slots than the Cauchy model
(or filters that did not appear to extract any particularly interpretable
features).

This difference in sparsity can be verified by examining the difference/gap
between the absolute value of the total discrepancy ToD and the reconstruction
loss Lx (which would tell us the degree of sparsity in each model since,
according to our energy function formulation earlier, |ToD| = Lx + lambda * sparsity_penalty).
In the experiment we ran for this demonstration, we saw that for the Cauchy prior model,
at the start of training, the |ToD| was 14.18 and Lx was 12.42 (in nats)
and, at the end of training, the |ToD| was 5.24 and Lx was 2.13 with
the ending gap being |ToD| - Lx = 3.11 nats. With respect to the latent
thresholding model, we observed that, at the start, |ToD| was -12.82 and
Lx was 12.77 and, at the end, the |ToD| was 2.59 and Lx was 2.50
with the ending gap being |ToD| - Lx = 0.09 nats. The final gap of the
thresholding model is substantially lower than the one of the Cauchy prior model,
indicating that the latent states of the thresholding model are, indeed,
the sparsest.

References

[1] Olshausen, B., Field, D. Emergence of simple-cell receptive field properties
by learning a sparse code for natural images. Nature 381, 607–609 (1996).
[2] Daubechies, Ingrid, Michel Defrise, and Christine De Mol. “An iterative
thresholding algorithm for linear inverse problems with a sparsity constraint.”
Communications on Pure and Applied Mathematics: A Journal Issued by the
Courant Institute of Mathematical Sciences 57.11 (2004): 1413-1457.

 Walkthrough 5: Amortized Inference

Walkthrough 5: Amortized Inference

In this demonstration, we will design a simple way to conduct amortized inference
to speed up the settling process of an NGC model, cutting down the number of
steps needed overall. We will build a custom model, which we will call the
hierarchical ISTA model or “GNCN-t1-ISTA”, and train it on the Olivetti database
of face images [4].
After going through this demonstration, you will:

	Learn how to construct a learnable inference projection graph to initialize
the states of an NGC system, facilitating amortized inference.

	Design a deep sparse coding model for modeling faces using the original
dataset used in [4] and visualize the acquired filters of the learned representation
system.

Note that the folders of interest to this demonstration are:

	walkthroughs/demo5/: this contains the necessary simulation scripts

	walkthroughs/data/: this contains the zipped copy of the face image arrays

Speeding Up the Settling Process with Amortized Inference

Although fitting an NGC model (a GNCN) to a data sample is a rather straightforward
process, as we saw in the Demo 1 the underlying dynamics of the neural system
require performing K steps of an iterative settling (inference) process to find
suitable estimates of the latent neural state values. For the problem we have
investigated so far, this only required around 50 steps which is not too
expensive to simulate but for higher-dimensional, more complex problems, such
as modeling temporal data generating processes or learning from sparse signals
(as in the case of reinforcement learning), this settling process could
potentially start maxing out modest computational budgets.

There are, at least, two key paths to reduce the underlying computational
expense of the iterative settling process required by a predictive processing
NGC model:

	exploit the layer-wise parallelism inherent to the NGC state and synaptic
update calculations – since NGC models are not update-locked (the state predictions
and weight updates do not depend on one another) as deep neural
networks are, one could design a distributed algorithm where a group/system of
GPUs/CPUs synchronously (or asynchronously) compute(s) layer-wise predictions
and weight updates, and

	reduce the number of settling steps by constructing a computation
process that infers the values of the latent states of a GNCN given a sensory
sample(s), ultimately serving as an intelligent initialization of the state values
instead of starting from zero vectors.
For this second way, approaches have ranged from ancestral sampling/projection,
as in deep Boltzmann machines [1] and as in for NGC systems formulated for active
inference [2], to learning (jointly with the generative model) a complementary
(neural) model, sometimes called a “recognition model”, in a process known as amortized inference, e.g., in sparse coding the algorithm developed to do this was
called predictive sparse decomposition [3].
Amortize means, in essence, to gradually reduce the initial cost of something
(whether it be an asset or activity) over a period.

While there are many ways in which one could implement amortized inference, we
will focus on using ngc-learn’s ProjectionGraph to construct a simple, learnable
recognition model.

The Model: Hierarchical ISTA

We will start by first constructing the model we would like to learn. Specifically,
for this demonstration, we want to build a model for synthesizing human faces,
specifically those contained in the Olivetti faces database.

For this part of the demonstration, you will need to unzip the data contained
in walkthroughs/data/faces.zip (in the walkthroughs/data/ sub-folder) to create
the necessary sub-folder which contains a single numpy array, faces/dataX.npy.
This data file contains the flattened vectors of 40 images of size 256 x 256
pixels (pixel values have been normalized to the range of [0,1]), each
depicting a human face.
Two images sampled from the dataset (dataX.npy) are shown below:

	[image: ../_images/face_img1.png]

	[image: ../_images/face_img2.png]

We will now construct the specialized model which we will call, in the context
of this demonstration, the “GNCN-t1-ISTA” (or “deep ISTA”). Specifically, we will
extend our sparse coding ISTA model from Demonstration #4 to utilize an extra
layer of latent variables “above”. Notably, we will use the soft-thresholding function,
which can be viewed as inducing a form a local lateral competition in the
latent activities to yield sparse representations, and apply to the two latent
state nodes of our system.

We start by first specifying the NGC system in design shorthand:

Node Name Structure:
z2 -(z2-mu1)-> mu1 ;e1; z1 -(z1-mu0-)-> mu0 ;e0; z0

where we see that our three-layer system consists of seven nodes in total, i.e.,
the three latent state nodes z2, z1 and z0, the two mean prediction nodes
mu1 and mu0, and the two error neuron nodes e1 and e0. Note that, when
we build our recognition model later, our goal will be to infer good guess of the
initial values of the z compartment of the nodes z1 and z2 (with z0 being
clamped to the input image patch x).

Inside of the provided gncn_t1_ista.py, we see how the core of the system
was put together with nodes and cables to create the hierarchical generative model:

x_dim = # ... dimension of patch data ...
---- build a hierarchical ISTA model ----
K = 10
beta = 0.05
general model configurations
integrate_cfg = {"integrate_type" : "euler", "use_dfx" : True}
thr_cfg = {"threshold_type" : "soft_threshold", "thr_lambda" : 5e-3}
cable configurations
init_kernels = {"A_init" : ("unif_scale",1.0)}
dcable_cfg = {"type": "dense", "init_kernels" : init_kernels, "seed" : seed}
pos_scable_cfg = {"type": "simple", "coeff": 1.0}
neg_scable_cfg = {"type": "simple", "coeff": -1.0}
constraint_cfg = {"clip_type":"forced_norm_clip","clip_mag":1.0,"clip_axis":1}

set up system nodes
z2 = SNode(name="z2", dim=100, beta=beta, leak=0, act_fx="identity",
 integrate_kernel=integrate_cfg, threshold_kernel=thr_cfg)
mu1 = SNode(name="mu1", dim=100, act_fx="identity", zeta=0.0)
e1 = ENode(name="e1", dim=100)
z1 = SNode(name="z1", dim=100, beta=beta, leak=0, act_fx="identity",
 integrate_kernel=integrate_cfg, threshold_kernel=thr_cfg)
mu0 = SNode(name="mu0", dim=x_dim, act_fx="identity", zeta=0.0)
e0 = ENode(name="e0", dim=x_dim)
z0 = SNode(name="z0", dim=x_dim, beta=beta, integrate_kernel=integrate_cfg, leak=0.0)

set up latent layer 2 to layer 1
z2_mu1 = z2.wire_to(mu1, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=dcable_cfg)
z2_mu1.set_constraint(constraint_cfg)
mu1.wire_to(e1, src_comp="phi(z)", dest_comp="pred_mu", cable_kernel=pos_scable_cfg)
z1.wire_to(e1, src_comp="z", dest_comp="pred_targ", cable_kernel=pos_scable_cfg)
e1.wire_to(z2, src_comp="phi(z)", dest_comp="dz_bu", mirror_path_kernel=(z2_mu1,"A^T"))
e1.wire_to(z1, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=neg_scable_cfg)

set up latent layer 1 to layer 0
z1_mu0 = z1.wire_to(mu0, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=dcable_cfg)
z1_mu0.set_constraint(constraint_cfg)
mu0.wire_to(e0, src_comp="phi(z)", dest_comp="pred_mu", cable_kernel=pos_scable_cfg)
z0.wire_to(e0, src_comp="phi(z)", dest_comp="pred_targ", cable_kernel=pos_scable_cfg)
e0.wire_to(z1, src_comp="phi(z)", dest_comp="dz_bu", mirror_path_kernel=(z1_mu0,"A^T"))
e0.wire_to(z0, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=neg_scable_cfg)

set up update rules and make relevant edges aware of these
z2_mu1.set_update_rule(preact=(z2,"phi(z)"), postact=(e1,"phi(z)"), param=["A"])
z1_mu0.set_update_rule(preact=(z1,"phi(z)"), postact=(e0,"phi(z)"), param=["A"])

Set up graph - execution cycle/order
print(" > Constructing NGC graph")
model = NGCGraph(K=K, name="gncn_t1_ista")
model.set_cycle(nodes=[z2,z1,z0])
model.set_cycle(nodes=[mu1,mu0])
model.set_cycle(nodes=[e1,e0])
model.apply_constraints()
model.compile(batch_size=batch_size)

Notice that we have set the number of simulated settling steps K to be quite
small compared to the sparse coding models in Demonstration #4, i.e., we have
drastically cut down the number of inference steps we required from K = 300 to
K = 10, a highly desirable 96.6% decrease in computational cost (with
respect to number of settling steps). The key is that the recognition model
will learn to approximate the end-result of the settling process, and, over
the course of training to an image database, progressively improve its estimates
which will in turn better initialize the NGCGraph object’s iterative inference.
Since the recognition model will continually chase the result of the ever-improving
settling process, we short-circuit the need for longer simulated settling processes
with the trade-off that our iterative inference will be a bit less accurate
in general (if the recognition model, which starts off randomly initialized,
provides bad starting points in the latent search space, then the settling
process will have to work harder to correct for the recognition model’s
deficiencies).

Constructing the Recognition Model

Building a recognition model for an NGC system is straightforward if we simply
treat it as an ancestral projection graph with the key exception that it is
“learnable”. Specifically, we will randomly initialize an ancestral projection
graph that will compute initial “guesses” of the activity values of z1 and z2
in our deep ISTA model. It helps to, as we did with the generative model, specify
the form of the recognition model in shorthand as follows:

Node Name Structure:
s0 -s0-s1-> s1 ; s1 -s1-s2-> s2
Note: s1; e1_i ; z1, s2; e2_i ; z2
Note: s0 = x // (we clamp s0 to data)

where we emphasize the difference between the recognition model and the generative
model by labeling the recognition model’s first and second latent layers as
s1 and s2, respectively. Our recognition model’s goal, as explained before,
will be to make its predicted value for s1 match z1 as well as
make its predicted value s2 match z2, where z1 and z2 are the results
of the NGCGraph model’s setting process that we designed above. This matching
task is emphasized by our shorthand’s second line, where we see that the value
of s1 will be compared to z1 via the error node e1_i and s2 will be
compared to z2 via e2_i.

Unlike the previous projection graphs we have built in earlier walkthroughs,
our recognition model runs in the “opposite” direction of our generative model –
it takes in data and predicts initial values for the latent states while
the generative model predicts a value for the data given the latent states.
Together, the recognition and the generative model will learn to cooperate
in order to produce reasonable values for the latent states z1 and z2 that
could plausibly produce a given input image patch z0 = x.

To create the recognition model that will allow us to conduct amortized inference,
we write the following:

set up this NGC model's recognition model
inf_constraint_cfg = {"clip_type":"norm_clip","clip_mag":1.0,"clip_axis":0}
z2_dim = ngc_model.getNode("z2").dim
z1_dim = ngc_model.getNode("z1").dim
z0_dim = ngc_model.getNode("z0").dim

s0 = FNode(name="s0", dim=z0_dim, act_fx="identity")
s1 = FNode(name="s1", dim=z1_dim, act_fx="identity")
st1 = FNode(name="st1", dim=z1_dim, act_fx="identity")
s2 = FNode(name="s2", dim=z2_dim, act_fx="identity")
st2 = FNode(name="st2", dim=z2_dim, act_fx="identity")
s0_s1 = s0.wire_to(s1, src_comp="phi(z)", dest_comp="dz", cable_kernel=dcable_cfg)
s0_s1.set_constraint(inf_constraint_cfg)
s1_s2 = s1.wire_to(s2, src_comp="phi(z)", dest_comp="dz", cable_kernel=dcable_cfg)
s1_s2.set_constraint(inf_constraint_cfg)

build the error neurons that examine how far off the inference model was
from the final NGC system's latent activities
e1_inf = ENode(name="e1_inf", dim=z_dim)
s1.wire_to(e1_inf, src_comp="phi(z)", dest_comp="pred_mu", cable_kernel=pos_scable_cfg)
st1.wire_to(e1_inf, src_comp="phi(z)", dest_comp="pred_targ", cable_kernel=pos_scable_cfg)
e2_inf = ENode(name="e2_inf", dim=z_dim)
s2.wire_to(e2_inf, src_comp="phi(z)", dest_comp="pred_mu", cable_kernel=pos_scable_cfg)
st2.wire_to(e2_inf, src_comp="phi(z)", dest_comp="pred_targ", cable_kernel=pos_scable_cfg)

set up update rules and make relevant edges aware of these
s0_s1.set_update_rule(preact=(s0,"phi(z)"), postact=(e1_inf,"phi(z)"), param=["A"])
s1_s2.set_update_rule(preact=(s1,"phi(z)"), postact=(e2_inf,"phi(z)"), param=["A"])

sampler = ProjectionGraph()
sampler.set_cycle(nodes=[s0,s1,s2])
sampler.set_cycle(nodes=[st1,st2])
sampler.set_cycle(nodes=[e1_inf,e2_inf])
sampler.compile()

Now all that remains is to combine the recognition model with the generative model
to create the full system. Specifically, to tie the two components together, we
would write the following code:

x = # ... sampled image patch (or batch of patches) ...
run recognition model
readouts = sampler.project(
 clamped_vars=[("s0","z",x)],
 readout_vars=[("s1","z"),("s2","z")]
)
s1 = readouts[0][2]
s2 = readouts[1][2]
now run the settling process
readouts, delta = model.settle(
 clamped_vars=[("z0","z", x)],
 init_vars=[("z1","z",s1),("z2","z",s2)],
 readout_vars=[("mu0","phi(z)"),("z1","z"),
 ("z2","z")],
 calc_delta=True
)
x_hat = readouts[0][2]

now compute the updates to the encoder given the current state of system
z1 = readouts[1][2]
z2 = readouts[2][2]
#z3 = readouts[3][2]
sampler.project(
 clamped_vars=[("s0","z",tf.cast(x,dtype=tf.float32)),
 ("s1","z",s1),("s2","z",s2),
 ("st1","z",z1),("st2","z",z2)]
)
r_delta = sampler.calc_updates()

update NGC system synaptic parameters
opt.apply_gradients(zip(delta, model.theta))
update recognition model synaptic parameters
r_opt.apply_gradients(zip(delta, sampler.theta))

The above code snippet would generally occur within your training loop (which
would be the same as the one in Demonstration #4) and can be founded integrated
into the two key files provided for this demonstration, i.e., sim_train.py
and gncn_t1_ista.py. Note that the gncn_t1_ista.py further illustrates
how you can write a model that would fit within the general schema of ngc-learn’s
Model Museum, which requires that NGC systems provide an API to their key
task-specific functions. gncn_t1_ista.py specifically implements all of the
code we developed above for the deep ISTA model and its corresponding
recognition model while sim_train.py is used to fit the model to the
Olivetti dataset you unzipped into the walkthroughs/data/ directory.

To train our deep ISTA model, you should execute the following:

python sim_train.py --config=sc_face/fit.cfg --gpu_id=0

which will simulate the training of a deep ISTA model on face image patches
for about 20 iterations. After this simulated process ends, you can then
run the visualization script we have created for you:

$ python viz_filters.py --model_fname=sc_face/model0.ngc --output_dir=sc_face/ --viz_encoder=True

which will produce and save two visualizations in your sc_face/ sub-directory,
one plot that depicts the learned bottom layer filters for the recognition
model and one for the deep ISTA model. You should see filter plots similar
to those presented below:

	[image: ../_images/recog_filters.jpg]

	[image: ../_images/model_filters.jpg]

As we see, our NGC system has desirably learned low-level feature detectors
corresponding to “pieces” of human faces, such as lips, noses, eyes, and other
facial components. This was all learned only a few steps of simulated settling
(K = 10) utilizing our learned recognition model. Notice that the low-level
filters of the recognition model (the plot to the left) look similar to those
acquired by the generative model but are “simpler” or less distinguished/sharp.
This makes sense given that we designed our recognition model to “serve” the
generative model by providing an initialization of its latent states (or
“starting points” for the search for good latent states that generate the
input patches). It appears that the recognition model’s facial feature detectors
are broad or less-detailed versions of those contained within our hierarchical
ISTA model.

References

[1] Srivastava, Nitish, Ruslan Salakhutdinov, and Geoffrey Hinton. “Modeling
documents with a Deep Boltzmann Machine.” Proceedings of the Twenty-Ninth
Conference on Uncertainty in Artificial Intelligence (2013).
[2] Ororbia, A. G. & Mali, A. Backprop-free reinforcement learning with active
neural generative coding. In Proceedings of the AAAI Conference on Artificial
Intelligence Vol. 36 (2022).
[3] Kavukcuoglu, Koray, Marc’Aurelio Ranzato, and Yann LeCun. “Fast inference
in sparse coding algorithms with applications to object recognition.”
arXiv preprint arXiv:1010.3467 (2010).
[4] Samaria, Ferdinando S., and Andy C. Harter. “Parameterisation of a
stochastic model for human face identification.” Proceedings of 1994 IEEE
workshop on applications of computer vision (1994).

 Walkthrough 6: Harmoniums and Contrastive Divergence

Walkthrough 6: Harmoniums and Contrastive Divergence

Although ngc-learn was originally designed with a focus on predictive
processing neural systems, it is possible to simulate other kinds of neural
systems with different dynamics and forms of learning. Notably, a class of
learning and inference systems that adapt through a process known as
contrastive Hebbian learning (CHL) can be constructed and simulated with
ngc-learn.

In this walkthrough, we will design a simple (single-wing) Harmonium, also
known as the restricted Boltzmann machine (RBM). We will specifically
focus on learning its synaptic connections with an algorithmic recipe known
as Contrastive Divergence (CD).
After going through this walkthrough, you will:

	Learn how to construct an NGCGraph that emulates the structure of an RBM and
adapt the NGC settling process to calculate approximate synaptic weight gradients
in accordance to Contrastive Divergence.

	Simulate fantasized image samples using the block Gibbs sampler implicitly
defined by the negative phase graph.

Note that the folders of interest to this walkthrough are:

	walkthroughs/demo6/: this contains the necessary simulation scripts

	walkthroughs/data/: this contains the zipped copy of the digit image arrays

On Single-Wing Harmoniums

A Harmonium is a generative model implemented as a stochastic, two-layer neural system
that attempts to learn a probability distribution over sensory input \(\mathbf{x}\), i.e.,
the goal of a Harmonium is to learn \(p(\mathbf{x})\), much like the models we were learning
in Walkthrough #1. Fundamentally, the approach to estimating \(p(\mathbf{x})\) that is
taken by a Harmonium is through optimizing an energy function \(E(\mathbf{x})\) (a
concept motivated by statistical mechanics), where the system searches for an
internal configuration, i.e., the values of its synapses, has low energy (values)
for patterns that lie come from the true data distribution \(p(\mathbf{x})\) and high energy
(values) for patterns that do not (or those that do not come from the training dataset).

The most common, standard Harmonium is one where input nodes (one per dimension
of the data observation space) are modeled as binary/Boolean sensors, or “visible
units” \(\mathbf{z}^0\) (which are clamped to actual data patterns), connected to a layer of
(stochastic) binary latent feature detectors, or “hidden units” \(\mathbf{z}^1\). Notably,
the connections between the latent and visible units are symmetric. As a result
of a key restriction imposed on the Harmonium’s network structure, i.e., no
lateral connections between the neurons in \(\mathbf{z}^0\) as well as those in \(\mathbf{z}^1\),
computing the latent and visible states is simple:

\[\begin{split}
p(\mathbf{z}^1 | \mathbf{z}^0) &= sigmoid(\mathbf{W} \cdot \mathbf{z}^0 + \mathbf{c}),
\; \mathbf{z}^1 \sim p(\mathbf{z}^1 | \mathbf{z}^0) \\
p(\mathbf{z}^0 | \mathbf{z}^1) &= sigmoid(\mathbf{W}^T \cdot \mathbf{z}^1 + \mathbf{b}),
\; \mathbf{z}^0 \sim p(\mathbf{z}^0 | \mathbf{z}^1)
\end{split}\]

where \(\mathbf{b}\) is the visible bias vector, \(\mathbf{c}\) is the latent bias vector,
and \(\mathbf{W}\) is the synaptic weight matrix that connects \(\mathbf{z}^0\) to \(\mathbf{z}^1\)
(and its transpose \(\mathbf{W}^T\) is
used to make predictions of the input itself). Note that \(\cdot\) means matrix/vector multiplication and
\(\sim\) denotes that we would sample from a probability (vector) and, in the above Harmonium’s case,
samples will be drawn treating conditionals such as \(p(\mathbf{z}^1 | \mathbf{z}^0)\)
as multivariate Bernoulli distributions.
\(\mathbf{z}^0\) would typically be clamped/set to the actual sensory input data \(\mathbf{x}\).

The energy function of the Harmonium’s joint configuration \((\mathbf{z}^0,\mathbf{z}^1)\)
(similar to that of a Hopfield network) is specified as follows:

\[
E(\mathbf{z}^0,\mathbf{z}^1) = -\sum_i \mathbf{b}_i \mathbf{z}^0_i -
\sum_j \mathbf{c}_j \mathbf{z}^1_j - \sum_i \sum_j \mathbf{z}^0_i \mathbf{W}_{ij} \mathbf{z}^1_j
\]

Notice in the equation above, we sum
over indices, e.g., \(\mathbf{z}^0_i\) retrieves the \(i\)th scalar element of (vector)
\(\mathbf{z}^0\) while \(\mathbf{W}_{ij}\) retrieves the scalar element at position
\((i,j)\) within matrix \(\mathbf{W}\). With this energy function, one can write out
the probability that a Harmonium assigns to a data point:

\[
p(\mathbf{z}^0 = \mathbf{x}) = \frac{1}{Z} \exp(-E(\mathbf{z}^0,\mathbf{z}^1))
\]

where \(Z\) is the normalizing constant (or, in statistics mechanics, the partition
function) needed to obtain proper probability values (and is, in fact, intractable
to compute for any reasonably-sized Harmonium – fortunately, we will not need to
calculate it in order to learn a Harmonium). When one works through the derivation
of the gradient of the log probability \(\log p(\mathbf{x})\) with respect to the synapses
such as \(\mathbf{W}\), they get a (contrastive) Hebbian-like update rule as follows:

\[
\Delta \mathbf{W} = <\mathbf{z}^0_i \mathbf{z}^1_j>_{data} - <\mathbf{z}^0_i \mathbf{z}^1_j>_{model}
\]

where the angle brackets \(< >\) tell us that we need to take the expectation of the
values within the brackets under a certain distribution (such as the data distribution
denoted by the subscript \(data\)).

Technically, to compute the update above, obtaining the first term
\(<\mathbf{z}^0_i \mathbf{z}^1_j>_{data}\) is easy since we take the product of a
data point and its corresponding hidden state under the Harmonium but obtaining
\(<\mathbf{z}^0_i \mathbf{z}^1_j>_{model}\) is very costly, as we would need to
initialize the value of \(\mathbf{z}^0\) to a random initial
sate and then run a Gibbs sampler for many iterations to accurately approximate
the second term. Fortunately, it was shown in work such as [3], that learning
a Harmonium is still possible by replacing the term \(<\mathbf{z}^0_i \mathbf{z}^1_j>_{model}\)
with \(<\mathbf{z}^0_i \mathbf{z}^1_j>_{recon}\), which is simply computed by using the
first term’s latent state \(\mathbf{z}^1\) to reconstruct the input and then using this reconstruction one
more to obtain its corresponding binary latent state. This is known as
“Contrastive Divergence”, and, although this approximation has been shown
to not actual follow the gradient of any known objective function, it works
well in practice when learning a generative model based on a Harmonium. Finally,
the vectorized form of the Contrastive Divergence update is:

\[
\Delta \mathbf{W} = \Big[(\mathbf{z}^0_{pos})^T \cdot \mathbf{z}^1_{pos} \Big]
- \Big[(\mathbf{z}^0_{neg})^T \cdot \mathbf{z}^1_{neg} \Big]
\]

where the first term (in brackets) is labeled as the “positive phase” (or the
positive, data-dependent statistics – where \(\mathbf{z}^0_{pos}\) denotes the
positive phase sample of \(\mathbf{z}^0\)) while the
second term is labeled as the “negative phase” (or the negative, data-independent
statistics – where \(\mathbf{z}^0_{neg}\) denotes the negative phase sample of
\(\mathbf{z}^0\)). Note that simpler rules of a similar form can be worked out for the
latent/visible bias vectors as well.

In ngc-learn, to simulate the above Harmonium generative model and its Contrastive
Divergence update, we will model the positive and negative phases as simulated
NGCGraphs, each responsible for producing the relevant statistics we need
to adjust synapses. In addition, we will find that we can further re-purpose
the created graphs to construct a block Gibbs sampler needed to create “fantasized”
data patterns from a trained Harmonium.

Restricted Boltzmann Machines: Positive & Negative Graphs

We begin by first specifying the structure of the Harmonium system we would like to
simulate. In NGC shorthand, the above positive and negative phase graphs would
simply be (under one complete generative model):

z0 -(z0-z1)-> z1
z1 -(z1-z0) -> z0
Note: z1-z0 = (z0-z1)^T (transpose-tied synapses)

To construct the desired Harmonium model, particularly the structure needed to
simulate Contrastive Divergence, we will need to break up the model into its
key “phases”, i.e., a positive phase and a negative phase. We will model each
phase as its own simulated NGC graph, allowing us to craft a general approach
that permits a K-step Contrastive Divergence learning process. In particular,
we will use the negative graph to emulate the crucial MCMC sampling step.

Building the positive phase of our Harmonium is simple and straightforward and
could be written as follows:

integrate_cfg = {"integrate_type" : "euler", "use_dfx" : False}
init_kernels = {"A_init" : ("gaussian",wght_sd), "b_init" : ("zeros")}
dcable_cfg = {"type": "dense", "init_kernels" : init_kernels, "seed" : seed}
pos_scable_cfg = {"type": "simple", "coeff": 1.0}

set up positive phase nodes
z1 = SNode(name="z1", dim=z_dim, beta=1, act_fx=act_fx, zeta=0.0,
 integrate_kernel=integrate_cfg, samp_fx="bernoulli")
z0 = SNode(name="z0", dim=x_dim, beta=1, act_fx="identity", zeta=0.0,
 integrate_kernel=integrate_cfg)
z0_z1 = z0.wire_to(z1, src_comp="phi(z)", dest_comp="dz_bu", cable_kernel=dcable_cfg)
z1_z0 = z1.wire_to(z0, src_comp="phi(z)", dest_comp="dz_bu", mirror_path_kernel=(z0_z1,"A^T"),
 cable_kernel=dcable_cfg)
z0_z1.set_decay(decay_kernel=("l1",0.00005))

set up positive phase update
z0_z1.set_update_rule(preact=(z0,"phi(z)"), postact=(z1,"phi(z)"), param=["A","b"])
z1_z0.set_update_rule(postact=(z0,"phi(z)"), param=["b"])

build positive graph
print(" > Constructing Positive Phase Graph")
pos_phase = NGCGraph(K=1, name="rbm_pos")
pos_phase.set_cycle(nodes=[z0, z1]) # z0 -> z1
pos_phase.apply_constraints()
pos_phase.set_learning_order([z1_z0, z0_z1])
pos_phase.compile(batch_size=batch_size)

which amounts to simply simulating the projection of z0 to latent state z1.
The key to ensuring we simulate this simple function properly is to effectively
“turn off” key parts of the neural state dynamics. Specifically, we see in the
above code-snippet we set the state update beta = 1 – this means that the full
value of the deposits in dz_bu and dz_bu will be added to the current
value of the compartment z within z1 – and zeta = 0 – which means
that the amount of recurrent carryover is completely zeroed out (yielding a
stateless node). Notice we have created a “dummy” or ghost connection via the cable
z1_z0 even though our positive phase graph will NOT actually execute the
transform. However, this ghost connection is needed so that way our positive
phase graph contains a visible unit bias vector (which will receive a full
Hebbian update equal to the clamped visible value in the compartment phi(z)
of z0).

When we trigger the .settle() routine for the above model given some observed
data (e.g., an image or image patch), we will obtain our single-step positive phase
(sufficient) statistics which include the clamped observed value of z0 = x as
well as its corresponding latent activity z1. This gives us half of what we need
to learn a Harmonium.

To gather the rest of the statistics that we require, we need to build the negative
phase of our model (to emulate its ability to “dream” up or confabulate
samples from its internal model of the world). While constructing the negative
phase is not that much more difficult than crafting the positive phase, it does
take a bit of care to emulate the underlying “cycle” that occurs in a Harmonium
when it synthesizes data when using ngc-learn’s stateful dynamics. In short, we
need three nodes to explicitly simulate the negative phase – a z1n_i intermediate
variable that we can clamp on the positive phase value of the latent state z1,
a generation output node z0n (where n labels this node as a “negative phase statistic”),
and finally a generated latent state z1n that corresponds to the output node.
The simulated cycle z1n_i => z0n => z1n can then be written as:

set up negative phase nodes
z1n_i = SNode(name="z1n_i", dim=z_dim, beta=1, act_fx=act_fx, zeta=0.0,
 integrate_kernel=integrate_cfg, samp_fx="bernoulli")
z0n = SNode(name="z0n", dim=x_dim, beta=1, act_fx=out_fx, zeta=0.0,
 integrate_kernel=integrate_cfg, samp_fx="bernoulli")
z1n = SNode(name="z1n", dim=z_dim, beta=1, act_fx=act_fx, zeta=0.0,
 integrate_kernel=integrate_cfg, samp_fx="bernoulli")
n1_n0 = z1n_i.wire_to(z0n, src_comp="S(z)", dest_comp="dz_td", mirror_path_kernel=(z0_z1,"A^T"),
 cable_kernel=dcable_cfg) # reuse A but create new b
n0_n1 = z0n.wire_to(z1n, src_comp="phi(z)", dest_comp="dz_bu", mirror_path_kernel=(z0_z1,"A+b")) # reuse A & b
n1_n1 = z1n.wire_to(z1n_i, src_comp="z", dest_comp="dz_bu", cable_kernel=pos_scable_cfg)

set up negative phaszupdate
n0_n1.set_update_rule(preact=(z0n,"phi(z)"), postact=(z1n,"phi(z)"), param=["A","b"])
n1_n0.set_update_rule(postact=(z0n,"phi(z)"), param=["b"])

build negative graph
print(" > Constructing Negative Phase Graph")
neg_phase = NGCGraph(K=1, name="rbm_neg")
neg_phase.set_cycle(nodes=[z1n_i, z0n, z1n]) # z1 -> z0 -> z1
neg_phase.set_learning_order([n1_n0, n0_n1]) # forces order: c, W, b
neg_phase.compile(batch_size=batch_size)

where we observe that the above “negative phase” graph allows us to emulate the
general K-step Contrastive Divergence algorithm (CD-K, where the commonly-used
single step approximation, or K=1 is denoted as CD-1 or just “CD”). Technically,
a Harmonium should be run for a very high value of K (approaching infinity) in
order to obtain a proper sample from the Harmonium’s equilibrium/steady state
distribution. However, this would be extremely costly to simulate and, as early studies [3]
observed, often only a few or even a single step of this Markov chain proved to
work quite well, approximating the contrastive divergence objective (the learning
algorithm’s namesake) instead of direct maximum likelihood.

Notice we utilize a special helper function set_learning_order() in both the
positive and negative phase graphs. This function allows us to
impose an explicit order (by taking in a list of the explicit cables we have created
for a particular graph) in the synaptic adjustment matrices that the NGCGraph
simulation object will return (we do this to ensure that the delta matrices
exactly mirror the order of those that will be returned by the positive phase
graph). This is important to do when you need to coordinate the returned learning
products of two or more NGCGraph objects, as we will do shortly. The order we
have imposed above ensures that we return a positive delta list and a negative
delta list that both respect the following ordering: db, dW, dc.

Now that we have the two graphs above, we can write the routine that will
explicitly calculate the approximate synaptic weight gradients as follows:

x = # ... sampled data pattern (or batch of patterns) ...
Ns = x.shape[0]
run positive phase
readouts, pos_delta = pos_phase.settle(
 clamped_vars=[("z0","z", x)],
 readout_vars=[("z1","S(z)")],
 calc_delta=calc_update
)
z1_pos = readouts[0][2] # get positive phase binary latent state z1
run negative phase
readouts, neg_delta = neg_phase.settle(
 init_vars=[("z1n_i","S(z)", z1_pos)],
 readout_vars=[("z0n","phi(z)"),("z1n","phi(z)")],
 calc_delta=calc_update
)
x_hat = readouts[0][2] # return reconstruction (from negative phase)

calculate the full Contrastive Divergence updates
delta = []
for i in range(len(pos_delta)):
 pos_dx = pos_delta[i]
 neg_dx = neg_delta[i]
 dx = (pos_dx - neg_dx) * (1.0/(Ns * 1.0))
 delta.append(dx) # multiply CD update by -1 to allow for minimization

opt.apply_gradients(zip(delta, pos_phase.theta))
neg_phase.set_theta(pos_phase.theta)

where we see that our synaptic update code carefully coordinates the positive
and negative “halves” of our Harmonium by not only combining their returned local updates
to compute full/final weight adjustments
but also ensures that we set/point the synaptic parameters inside of the .theta of
the negative graph to those in the .theta of the positive graph.

Note that one could adapt the code above (or what is found in the Model Museum
Harmonium model structure) to emulate more advanced/powerful forms of
Contrastive Divergence such as “persistent” Contrastive Divergence, where we,
instead of clamping the value of z1 to z1n_i, we inject random noise (or to
a sample of the Harmonium’s latent prior), and even an algorithm known as
parallel tempering, where we would emulate multiple “negative graphs” and use
samples from all of them.

Before we go and fit our Harmonium to actual data, we need to write one final bit
of functionality for our model – the block Gibbs sampler to synthesize data
samples given the model’s current set of synaptic parameters.
This is simply done as follows:

def sample(pos_phase, neg_phase, K, x_sample=None, batch_size=1):
 samples = []
 z1_sample = None
 ## set up initial condition for the block Gibbs sampler (use positive phase)
 readouts, _ = pos_phase.settle(
 clamped_vars=[("z0","z", x_sample)],
 readout_vars=[("z1","S(z)")],
 calc_delta=False
)
 z1_sample = readouts[0][2]
 pos_phase.clear()

 ## run block Gibbs sampler to generate a chain of sampled patterns
 neg_phase.inject([("z1n_i", "S(z)", z1_sample)]) # start chain at sample
 for k in range(K):
 readouts, _ = neg_phase.settle(
 readout_vars=[("z0n", "phi(z)"), ("z1n", "phi(z)")],
 calc_delta=False, K=1
)
 z0_prob = readouts[0][2] # the "sample" of z0
 z1_prob = readouts[1][2]
 samples.append(z0_prob) # collect output sample
 neg_phase.clear()
 neg_phase.inject([("z1n_i", "phi(z)", z1_prob)])
 return samples

Notice that this sampling function produces a list/array of samples in the order
in which they were produced by the Markov chain constructed above.

Using the Harmonium to Dream Up Handwritten Digits

We finally take the Harmonium that we have constructed above and fit it to
some MNIST digits (the same dataset we used in Walkthrough #1). Specifically,
we will leverage the Harmonium, model in the Model Museum
as it implements the above core components/functions internally. In the

script sim_train.py, you will find a general simulated training loop similar to
what we have developed in previous walkthroughs that will fit our Harmonium
to the MNIST database (unzip the file mnist.zip in the /walkthroughs/data/
directory if you have not already) by cycling through it several times, saving the final
(best) resulting to disk within the rbm/ sub-directory. Go ahead and execute
the training process as follows:

$ python sim_train.py --config=rbm/fit.cfg --gpu_id=0

which will fit/adapt your Harmonium to MNIST. Once the training process has
finished, you can then run the following to sample from Harmonium using
block Gibbs sampling:

$ python sample_rbm.py --config=rbm/fit.cfg --gpu_id=0

which will take your trained Harmonium’s negative phase and use it to synthesize
some digits. You should see inside the rbm/ sub-directory something similar to:

[image: ../_images/rbm_samples1.png]

 Walkthrough 7: Spiking Neural Networks

Walkthrough 7: Spiking Neural Networks

In this demonstration, we will design a three layer spiking neural network (SNN).
We will specifically cover the special base spiking node classes within ngc-learn’s
nodes-and-cables system, particularly examining the properties of the leaky
integrate-and-fire (LIF) node with respect to modeling voltage and spike trains.
In addition, we will cover how to set up a simple online learning process for
training the SNN on the MNIST database.
After going through this demonstration, you will:

	Learn how to use/setup the SpNode_LIF (the LIF node class) and the
SpNode_Enc (the Poisson spike train node class) and visualize the voltage
as a function of input current and the resulting spikes in a raster plot.

	Build a spiking network using the SpNode_LIF and the SpNode_Enc nodes
and simulate its adaptation to MNIST image patterns by setting up a simple
algorithm known as broadcast feedback alignment.

Note that the folders of interest to this demonstration are:

	walkthroughs/demo7/: this contains the necessary simulation scripts

	walkthroughs/data/: this contains the zipped copy of the digit image arrays

Encoding Data Patterns as Poisson Spike Trains

Before we start crafting a spiking neural network (SNN), let us first turn our
attention to the data itself. Currently, the patterns in the MNIST database
are in continuous/real-valued form, i.e., pixel values normalized to the range of
\([0,1]\). While we could directly use them as input into a network of LIF neurons,
as was done in [1] (meaning we would copy the literal data vector each step in
time, much as we have done in previous walkthroughs), it would be better if we
could first convert them to binary spike trains themselves given that SNNs are technically
meant to process time-varying information. While there are many ways to encode the
data as spike trains, we will take the simplest approach in this walkthrough and
work with an encoding scheme known as rate encoding.

Specifically, rate encoding entails normalizing the original real-valued data vector
\(\mathbf{x}\) to the range of \([0,1]\) and then treating each dimension \(\mathbf{x}_i\)
as the probability that a spike will occur, thus yielding (for each dimension) a rate code
with a value of \(\mathbf{s}_i\). In other words, each feature drives a Bernoulli
distribution of the form where \(\mathbf{s}_i \sim \mathcal{B}(n, p)\) where \(n = 1\)
and \(p = \mathbf{x}_i\). This, over time, results in a Poisson process where the
rate of firing is dictated by solely in proportion to a feature’s value.

To rate code your data, let’s start by using a simple function in ngc-learn’s
ngclearn.utils.stat_utils module. Assuming we have a simple \(10\)-dimensional
data vector \(\mathbf{x}\) (of shape 1 x 10) with values in the range of
\([0,1]\), we can convert it to a spike train over \(100\) steps in time as follows:

import tensorflow as tf
import numpy as np
from ngclearn.utils import stat_utils as stat
import ngclearn.utils.viz_utils as viz

seed = 1990
tf.random.set_seed(seed=seed)
np.random.seed(seed)

z = np.zeros((1,10),dtype=np.float32)
z[0,0] = 0.8
z[0,1] = 0.2
z[0,3] = 0.55
z[0,4] = 0.9
z[0,6] = 0.15
z[0,8] = 0.6
z[0,9] = 0.77
spikes = None
for t in range(100):
 s_t = stat.convert_to_spikes(z, gain=1.0)
 if t > 0:
 spikes = tf.concat([spikes, s_t],axis=0)
 else:
 spikes = s_t
spikes = spikes.numpy()

viz.create_raster_plot(spikes, s=100, c="black")

where we notice that in the first dimension [0,0], fifth dimension [0,4],
and the final dimension [0,9] set to fairly high spike probabilities. This
code will produce and save locally to disk the following raster plot for
visualizing the resulting spike trains:

[image: ../_images/input_raster_plot.png]

 The Model Museum

The Model Museum

Predictive processing has undergone many important developments over the decades,
dating back to Hermann von Helmholtz’s theory of “unconscious inference”
in perception which itself operationalized the ideas of the 18th century philosopher
Immanuel Kant. It has risen as a promising theoretical and mathematical model
of various aspects of neural circuitry in computational neuroscience, serving
as one embodiment of the Bayesian brain hypothesis, and has been shown to be a
powerful computational modeling tool for cognitive science and
statistical/machine learning. Many different architectures/systems, often designed to serve
one or a few particular modeling purposes, have been (and still are being) proposed.
Given this, one of ngc-learn’s aims is to capture an approximate snapshot of as many
of these architectures/ideas as possible.

Given the generality of the NGC computational framework [1], many
flavors of predictive processing can be recovered/derived and it is within
ngc-learn’s Model Museum that we intend to model and preserve variant
models (as they historically have been and currently are being created). This
allows current and future scientists, engineers, and enthusiasts to examine
these models, much as one would curiously examine exhibits. such as paintings
or preserved mechanical inventions and technological artifacts, at a museum.
The Model Museum also provides an opportunity for those working in the domain
of predictive processing to publish their successful structures/ideas that are
presented in publications and/or tested applications (contact us if you have a
particular published or representative predictive processing model that you
would like exhibited and to be integrated into the Model Museum for the benefit
of the community).
In parallel, since ngc-learn is an evolving library, we will be working to
curate and update the museum with representative models over time
and several are already under development/testing (stay tuned for their release
across software releases/patches/edits).

As mentioned above, NGC predictive processing models have historically been
designed to serve particular purposes, thus we wrap their underlying NGC graphs
in an agent structure that provides particular documented convenience functions
that allow the user/modeler to interact with such models according to their
intended purpose/use. For example, a published/public NGC model that was
developed to classify data will offer functionality for categorization in a
relevant prediction routine while another one that was created to operate as
a generative/density estimator will sport a routine(s) for sampling/synthesization.

Current models that we have implemented in the Model Museum so far include:

	GNCN-t1/Rao - the model proposed in (Rao & Ballard, 1999) [2]

	GNCN-t1-Sigma/Friston - the model proposed in (Friston, 2008) [3]

	GNCN-PDH - the model proposed in (Ororbia & Kifer, 2022) [1]

	GNCN-t1-FFM - the model developed in (Whittington & Bogacz, 2017) [4]

	GNCN-t1-SC - the model proposed in (Olshausen & Field, 1996) [5]

	Harmonium - the model developed in (Smolensky, 1986; Hinton 1999) [6] [7]

	SNN-BA - a generalization of the spiking model in (Samadi et al., 2017) [8]

(If there is a model you think should be exhibited/integrated into the Model
Museum, and/or would like to contribute, please write us at ago@cs.rit.edu or
raise a github issue.)

References:
[1] Ororbia, A., and Kifer, D. The neural coding framework for learning
generative models. Nature Communications 13, 2064 (2022).
[2] Rao, Rajesh PN, and Dana H. Ballard. “Predictive coding in the visual cortex:
a functional interpretation of some extra-classical receptive-field effects.”
Nature neuroscience 2.1 (1999): 79-87.
[3] Friston, Karl. “Hierarchical models in the brain.” PLoS Computational
Biology 4.11 (2008): e1000211.
[4] Whittington, James CR, and Rafal Bogacz. “An approximation of the error
backpropagation algorithm in a predictive coding network with local hebbian
synaptic plasticity.” Neural computation 29.5 (2017): 1229-1262.
[5] Olshausen, B., Field, D. Emergence of simple-cell receptive field properties
by learning a sparse code for natural images. Nature 381, 607–609 (1996).
[6] Hinton, Geoffrey E. “Training products of experts by maximizing contrastive
likelihood.” Technical Report, Gatsby computational neuroscience unit (1999).
[7] Smolensky, P. “Information Processing in Dynamical Systems: Foundations of
Harmony Theory.” Parallel distributed processing: explorations in the
microstructure of cognition 1 (1986).
[8] Samadi, Arash, Timothy P. Lillicrap, and Douglas B. Tweed. “Deep learning with
dynamic spiking neurons and fixed feedback weights.” Neural computation 29.3
(2017): 578-602.

 GNCN-t1 (Rao & Ballard, 1999)

GNCN-t1 (Rao & Ballard, 1999)

This circuit implements the model proposed in (Rao & Ballard, 1999) [1].
Specifically, this model is unsupervised and can be used to process sensory
pattern (row) vector(s) x to infer internal latent states. This class offers,
beyond settling and update routines, a projection function by which ancestral
sampling may be carried out given the underlying directed generative model
formed by this NGC system.

The GNCN-t1 is graphically depicted by the following graph:

	[image: ../_images/gncn_t1.png]

	
class ngclearn.museum.gncn_t1.GNCN_t1(args)

	Structure for constructing the model proposed in:

Rao, Rajesh PN, and Dana H. Ballard. “Predictive coding in the visual
cortex: a functional interpretation of some extra-classical receptive-field
effects.” Nature neuroscience 2.1 (1999): 79-87.

Note this model includes the Laplacian prior to induce some level of sparsity
in the latent activities. This model, under the NGC computational framework,
is referred to as the GNCN-t1/Rao, according to the naming convention in
(Ororbia & Kifer 2022).

Node Name Structure:

z3 -(z3-mu2)-> mu2 ;e2; z2 -(z2-mu1)-> mu1 ;e1; z1 -(z1-mu0-)-> mu0 ;e0; z0

	Parameters

	args – a Config dictionary containing necessary meta-parameters for the GNCN-t1

DEFINITION NOTE:

args should contain values for the following:

* batch_size - the fixed batch-size to be fed into this model

* z_top_dim - # of latent variables in layer z3 (top-most layer)

* z_dim - # of latent variables in layers z1 and z2

* x_dim - # of latent variables in layer z0 or sensory x

* seed - number to control determinism of weight initialization

* wght_sd - standard deviation of Gaussian initialization of weights

* beta - latent state update factor

* leak - strength of the leak variable in the latent states

* lmbda - strength of the Laplacian prior applied over latent state activities

* K - # of steps to take when conducting iterative inference/settling

* act_fx - activation function for layers z1, z2, and z3

* out_fx - activation function for layer mu0 (prediction of z0) (Default: sigmoid)

	
project(z_sample)

	Run projection scheme to get a sample of the underlying directed
generative model given the clamped variable z_sample

	Parameters

	z_sample – the input noise sample to project through the NGC graph

	Returns

	x_sample (sample(s) of the underlying generative model)

	
settle(x, calc_update=True)

	Run an iterative settling process to find latent states given clamped
input and output variables

	Parameters

	
	x – sensory input to reconstruct/predict

	calc_update – if True, computes synaptic updates @ end of settling
process (Default = True)

	Returns

	x_hat (predicted x)

	
calc_updates(avg_update=True, decay_rate=- 1.0)

	Calculate adjustments to parameters under this given model and its
current internal state values

	Returns

	delta, a list of synaptic matrix updates (that follow order of .theta)

	
clear()

	Clears the states/values of the stateful nodes in this NGC system

References:
[1] Rao, Rajesh PN, and Dana H. Ballard. “Predictive coding in the visual
cortex: a functional interpretation of some extra-classical receptive-field
effects.” Nature neuroscience 2.1 (1999): 79-87.

 GNCN-t1-Sigma (Friston, 2008)

GNCN-t1-Sigma (Friston, 2008)

This circuit implements the model proposed in (Friston, 2008) [1].
Specifically, this model is unsupervised and can be used to process sensory
pattern (row) vector(s) x to infer internal latent states. This class offers,
beyond settling and update routines, a projection function by which ancestral
sampling may be carried out given the underlying directed generative model
formed by this NGC system.

The GNCN-t1-Sigma is graphically depicted by the following graph:

	[image: ../_images/gncn_t1_sigma.png]

	
class ngclearn.museum.gncn_t1_sigma.GNCN_t1_Sigma(args)

	Structure for constructing the model proposed in:

Friston, Karl. “Hierarchical models in the brain.” PLoS Computational
Biology 4.11 (2008): e1000211.

Note this model includes a Laplacian prior to induce some level of sparsity
in the latent activities.
This model, under the NGC computational framework, is referred to as
the GNCN-t1-Sigma/Friston, according to the naming convention in
(Ororbia & Kifer 2022).

Node Name Structure:

z3 -(z3-mu2)-> mu2 ;e2; z2 -(z2-mu1)-> mu1 ;e1; z1 -(z1-mu0-)-> mu0 ;e0; z0

e2 -> e2 * Sigma2; e1 -> e1 * Sigma1 // Precision weighting

	Parameters

	args – a Config dictionary containing necessary meta-parameters for the GNCN-t1-Sigma

DEFINITION NOTE:

args should contain values for the following:

* batch_size - the fixed batch-size to be fed into this model

* z_top_dim: # of latent variables in layer z3 (top-most layer)

* z_dim: # of latent variables in layers z1 and z2

* x_dim: # of latent variables in layer z0 or sensory x

* seed: number to control determinism of weight initialization

* wght_sd: standard deviation of Gaussian initialization of weights

* beta: latent state update factor

* leak: strength of the leak variable in the latent states

* lmbda: strength of the Laplacian prior applied over latent state activities

* K: # of steps to take when conducting iterative inference/settling

* act_fx: activation function for layers z1, z2, and z3

* out_fx: activation function for layer mu0 (prediction of z0) (Default: sigmoid)

	
project(z_sample)

	Run projection scheme to get a sample of the underlying directed
generative model given the clamped variable z_sample

	Parameters

	z_sample – the input noise sample to project through the NGC graph

	Returns

	x_sample (sample(s) of the underlying generative model)

	
settle(x, calc_update=True)

	Run an iterative settling process to find latent states given clamped
input and output variables

	Parameters

	
	x – sensory input to reconstruct/predict

	calc_update – if True, computes synaptic updates @ end of settling
process (Default = True)

	Returns

	x_hat (predicted x)

	
calc_updates(avg_update=True, decay_rate=- 1.0)

	Calculate adjustments to parameters under this given model and its
current internal state values

	Returns

	delta, a list of synaptic matrix updates (that follow order of .theta)

	
clear()

	Clears the states/values of the stateful nodes in this NGC system

References:
[1] Friston, Karl. “Hierarchical models in the brain.” PLoS Computational
Biology 4.11 (2008): e1000211.

 GNCN-PDH (Ororbia & Kifer, 2020/2022)

GNCN-PDH (Ororbia & Kifer, 2020/2022)

This circuit implements one of the models proposed in (Ororbia & Kifer, 2022) [1].
Specifically, this model is unsupervised and can be used to process sensory
pattern (row) vector(s) x to infer internal latent states. This class offers,
beyond settling and update routines, a projection function by which ancestral
sampling may be carried out given the underlying directed generative model
formed by this NGC system.

The GNCN-PDH is graphically depicted by the following graph:

	[image: ../_images/gncn_pdh.png]

	
class ngclearn.museum.gncn_pdh.GNCN_PDH(args)

	Structure for constructing the model proposed in:

Ororbia, A., and Kifer, D. The neural coding framework for learning
generative models. Nature Communications 13, 2064 (2022).

This model, under the NGC computational framework, is referred to as
the GNCN-t1-Sigma/Friston, according to the naming convention in
(Ororbia & Kifer 2022).

Historical Note:

(The arXiv paper that preceded the publication above is shown below:)

Ororbia, Alexander, and Daniel Kifer. “The neural coding framework for

learning generative models.” arXiv preprint arXiv:2012.03405 (2020).

Node Name Structure:

z3 -(z3-mu2)-> mu2 ;e2; z2 -(z2-mu1)-> mu1 ;e1; z1 -(z1-mu0-)-> mu0 ;e0; z0

z3 -(z3-mu1)-> mu1; z2 -(z2-mu0)-> mu0

e2 -> e2 * Sigma2; e1 -> e1 * Sigma1 // Precision weighting

z3 -> z3 * Lat3; z2 -> z2 * Lat2; z1 -> z1 * Lat1 // Lateral competition

e2 -(e2-z3)-> z3; e1 -(e1-z2)-> z2; e0 -(e0-z1)-> z1 // Error feedback

	Parameters

	args – a Config dictionary containing necessary meta-parameters for the GNCN-PDH

DEFINITION NOTE:

args should contain values for the following:

* batch_size - the fixed batch-size to be fed into this model

* z_top_dim: # of latent variables in layer z3 (top-most layer)

* z_dim: # of latent variables in layers z1 and z2

* x_dim: # of latent variables in layer z0 or sensory x

* seed: number to control determinism of weight initialization

* wght_sd: standard deviation of Gaussian initialization of weights

* beta: latent state update factor

* leak: strength of the leak variable in the latent states

* K: # of steps to take when conduc