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CHAPTER

ONE

OVERVIEW

ngc-learn is a Python library for building, simulating, and analyzing arbitrary predictive processing/coding mod-
els based on the neural generative coding (NGC) computational framework as well as other neurobiologically-
motivated/grounded systems. This toolkit is built on top of Tensorflow 2 and is distributed under the 3-Clause BSD
license.

Advances made in research on artificial neural networks (ANNs) have led to many breakthroughs in machine learn-
ing and beyond, resulting in the design of powerful models that can categorize and forecast as well as agents that can
play games and solve complex problems. Behind these achievements is the backpropagation of errors (or backprop)
algorithm. Although elegant and powerful, a major long-standing criticism of backprop has been its biological implau-
sibility. In short, it is not likely that the brain adjusts the synapses that connect the billions of neurons that compose it
in the way that backprop would prescribe.

Although ANNs are (loosely) inspired by our current understanding of the human brain, the connections to the actual
mechanisms that drive systems of natural neurons are quite loose, at best. Although the question as to how the brain
exactly conducts credit assignment – or the process of determining the contribution of each and every neuron to the
system’s overall error on some task (the “blame game”) – is still an open one, it would prove invaluable to have a
flexible computational and software framework that can facilitate the design and development of brain-inspired neural
systems that can also learn complex tasks. These tasks range from generative modeling to interacting and manipulating
dynamically-evolving environments. This would benefit researchers in fields including, but not limited to, machine
learning, (computational) neuroscience, and cognitive science.

ngc-learn aims to fill the above need by concretely instantiating an important theory in neuroscience known as predictive
processing, positing that the brain is largely a continual prediction engine, constantly hypothesizing the state of its
environment and updating its own internal mental model of it as data is gathered. Moreover, prediction and correction
happen at many levels or regions within the brain – clusters or groups of neurons in one region attempt to predict the state
of neurons at another region, forming a complex, somewhat hierarchical structure that includes neurons which attempt
to predict actual sensory input. Neurons within this system adjust their internal activity values (as well the strengths
of the synapses that wire to them) based on how different their predictions were from observed signals. Concretely,
ngc-learn implements a general predictive processing framework known as neural generative coding (NGC).

The overarching goal of ngc-learn is to provide researchers and engineers with:

• a modular design that allows for the flexible creation, simulation, and analysis of neural systems fundamentally
built and driven by predictive processing;

• a powerful, approachable tool, written by and maintained by researchers and experimenters directly studying and
working to advance predictive processing, meant to lower the barriers to entry to this field of research;

• a “model museum” that captures the essence of fundamental and interesting predictive processing models and
algorithms throughout history, allowing for the study of and experimentation with classical and modern ideas.

The ngc-learn software framework was originally developed in 2019 by the Neural Adaptive Computing (NAC) lab-
oratory in Rochester Institute of Technology meant as an internal tool for predictive processing research (with earlier
incarnations in the Scala programming language, dating back to early 2017). It remains actively maintained and used
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for predictive processing research in NAC (see ngc-learn’s mention/announcement in this engineering blog post). We
warmly welcome community contributions to this project. For details please check out our contributing guidelines.

1.1 Citation

Please cite ngc-learn’s source/core paper if you use this framework in your publications:

@article{Ororbia2022,
author={Ororbia, Alexander and Kifer, Daniel},
title={The neural coding framework for learning generative models},
journal={Nature Communications},
year={2022},
month={Apr},
day={19},
volume={13},
number={1},
pages={2064},
issn={2041-1723},
doi={10.1038/s41467-022-29632-7},
url={https://doi.org/10.1038/s41467-022-29632-7}

}
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CHAPTER

TWO

INSTALLATION

ngc-learn officially supports Linux on Python 3. It can be run with or without a GPU.

Setup: Ensure that you have installed the following base dependencies in your system. Note that this library was
developed and tested on Ubuntu 18.04. Specifically, ngc-learn requires:

• Python (>=3.7)

• Numpy (>=1.20.0)

• Tensorflow 2.0.0, specifically, tensorflow-gpu>=2.0.0

• scikit-learn (>=0.24.2) (needed for the demonstrations in examples/ as well as ngclearn.density)

• matplotlib (>=3.4.3) (needed for the demonstrations in examples/)

2.1 Install from Source

1. Clone the ngc-learn repository:

$ git clone https://github.com/ago109/ngc-learn.git
$ cd ngc-learn

2. Install the base requirements (and a few extras for building the docs) with:

$ pip3 install -r requirements.txt

3. Install the ngc-learn package via:

$ python setup.py install

If the installation was successful, you should see the following if you test it against your Python interpreter, i.e.,
run the $ python command and complete the following sequence of steps as depicted in the screenshot below:

After installation, you can also the tests in the directory /tests/, specifically

$ python test_fun_dynamics.py

3
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and should see that all the basic assertion tests yield pass as follows:

4 Chapter 2. Installation
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2.2 A Note on Simulating with the GPU or CPU

Simulations using ngc-learn can be run on either the CPU or GPU (currently, in this version of ngc-learn, there is no
multi-CPU/GPU support) by writing code near the top of your general simulation scripts as follows:

mid = -1 # the gpu_id (run nivida-smi to find your system's GPU identifiers)
if mid >= 0:

print(" > Using GPU ID {0}".format(mid))
os.environ["CUDA_VISIBLE_DEVICES"]="{0}".format(mid)'
gpu_tag = '/GPU:0'

else:
os.environ["CUDA_VISIBLE_DEVICES"]="-1"
gpu_tag = '/CPU:0'

...other non-initialization/simulation code goes here...

with tf.device(gpu_tag): # forces code below here to reisde on GPU with identifer "mid"
...initialization and simulation code goes here...

where mid = -1 triggers a CPU-only simulation while mid >= 0 would trigger a GPU simulation based on the iden-
tifier provided (an mid = 0 would force the simulation to take place on GPU with an identifier of 0 – you can query
the identifiers of what GPUs your system houses with the bash command $ nvidia-smi).

Note that, as shown in the code snippet above, later on in your script, before the code you write that executes things
such as initializing NGC graphs or simulating the NGC systems (learning, inference, etc.), it is recommended to place
a with-statement before the relevant code (which forces the execution of the following code indented underneath the
with-statement to reside on the GPU with the identifier you provided.)

2.2. A Note on Simulating with the GPU or CPU 5
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CHAPTER

THREE

LESSON 1: THE NODES-AND-CABLES SYSTEM

In this tutorial, we will focus on working through the very basics of ngc-learn’s nodes-and-cables system. Specifically,
you will learn how various (mini-)circuits are built in order to develop an intuition of how these fundamental modeling
blocks fit together and how, when they are put together in the right way, you can simulate your own evolving dynamical
neural systems.

We recommend that you create a directory labeled tutorials/ and a sub-directory within labeled as lesson1/ for
you to place the code/Python scripts that you will write in throughout this lesson.

3.1 Theory: Cable Theory and Neural Compartments

At its core, part of ngc-learn’s core design is inspired by (neural) cable theory , where neuronal units, which are arranged
in complex connectivity structures, are viewed as performing dendritic calculations (of varying complexity). In essence,
a particular neuron integrates information from different input signal sources (for example, signals produced by other
neurons), in often highly nonlinear ways through a complex dendritic tree.

Although modeling a complete neuronal system through the lens of cable theory is complex and intricate in of itself,
ngc-learn is built with this direction in mind. ngc-learn starts with with the idea a neuron (or a cluster of them) can
be viewed as a node, or Node (also see Node Model), and each bundle of synapses that connect pairs of nodes can be
viewed as a cable, or Cable (also see Cable Model).

Each node has multiple, different (named) “compartments”, which are regions or slots within the node that other nodes
can deposit information/signals into. These compartments allow a node to collect information from many different
connected/related nodes and then decide how to combine these different signals in order calculate its own output ac-
tivity (either in the form of a rate-coded firing rate or binary spikes) using the integration logic defined within its own
specific step() function. When an NGC system, composed of many of these nodes, is simulated over a period of time
(processing some form of sensory input), its underlying simulation object (the NGCGraph) calls the step() routine of
each constituent node within one discrete time step. The order in which the node step() routines are called is governed
by “execution cycles”, which are defined by the experimenter at object initialization, for example, a user might want all
of the state nodes to first execute their internal step logic before the error nodes do (which can be done by specifying
two distinct cycles in the order desired).

As a result, many nodes and cables result in an NGC system where each node is itself, in general, a stateful computation
even if we are processing inherently non-temporal data such as static images.
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3.2 Node and Cable Fundamentals

To start creating predictive processing models and other neurobiological neural systems, we must first examine the
fundamental building blocks you will need to craft them. At a high level, motivated by the theory described above, an
NGC system is made up of multiple nodes and cables where each node (or cluster/group of neurons) in the system con-
tains one or more compartments (or vectors of scalar numbers/signals) and each cable transmits the information (vector
of numbers) inside one compartment within one node and transforms this information (potentially with synapses) and
finally deposits this transformed information into one single compartment of another node. Understanding how nodes
and cables relate to each other in ngc-learn is necessary if one wants to build and simulate their own custom NGC
system (for example, the arbitrary 3-node one graphically depicted in the figure below).

3.2.1 The Node

First, let us examine the node object itself. A node (or Node) contains inside of it a cluster (or block) of neurons, the
number of which is controlled through the dim argument. We will, in this tutorial lesson, examine two core node types
within ngc-learn, the stateful node (or SNode) and the error node (ENode), although there are other node types (such
as convenience nodes like the FNode or spiking nodes).

Every node in ngc-learn has several compartments, which are made explicit in each node’s documentation listed un-
der “Compartments:” and the names of which can be programmatically accessed through the node’s data member
.compartment_names. As mentioned in the last section, the signal values within these compartments are often com-
bined together according to the logic defined within a node’s .step() simulation function. Furthermore, each node
contains two other data members of particular interest – the .connected_cables list and the .constant_names list.
The .constant_names contains fixed integer/scalar coefficients/values that are also used within an node’s .step()
logic, such as biological constants derived from experimental data or user-set coefficients that can be defined before

8 Chapter 3. Lesson 1: The Nodes-and-Cables System
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simulation (like an integration time constant). The .connected_cables is an (unordered) list of Cable objects that
connect to a particular node (one can iterate over this list and print out the names of each cable if need be). Each cable
object, which we will discuss in more detail later, has knowledge of the specific compartment within a given node it
is to deposit its information into and the node can easily query the name of this compartment by accessing the cable’s
data member .dest_comp.

Given the information above (with the aid of a few other internal book-keeping data structures), a node, after its own
.compile() routine has been executed (which is done within an NGCGraph’s .compile() function call), will run its
own internal logic each time its .step() is called, continually integrating information from its named compartments
until the end of simulation time window. While we will defer the exact details of how a .step() function is/should
be implemented for a subsequent tutorial lesson (which will aid developers interested in contributing their own node
types to ngc-learn), we can briefly speak to the neural dynamics that occurs within .step() for the two nodes you will
work with in this lesson.

For a state node (SNode), as seen in its API , we see that we have six compartments, which can be printed to I/O as in
the following code snippet/example (you can place it in a script named test_node.py):

import tensorflow as tf
import numpy as np
from ngclearn.engine.nodes.snode import SNode

a = SNode(name="a", dim=1, beta=1, leak=0.0, act_fx="identity")
print("Compartments: {}".format(a.compartment_names))

which will print the compartments internal to the above node a:

Compartments: ['dz_bu', 'dz_td', 'z', 'phi(z)', 'S(z)']

We will discuss the first four since the last one is a specialized compartments only used in certain situations. The neural
dynamics of a state node, according to the first four compartments, is mathematically depicted by the following partial
differential equation:

𝜕z

𝜕𝑡
= −𝛾𝑙𝑒𝑎𝑘z + (dz𝑡𝑑 + dz𝑏𝑢 ⊙ 𝜑′(z)) + prior(z)

where we also formally represent the compartments dz_bu, dz_td, z, and phi(z) as dz𝑏𝑢, dz𝑡𝑑, z, and 𝜑(z), respec-
tively. This means that, if we use Euler integration to update the SNode’s compartment z (the default in ngc-learn), z
is updated each call to .step() as follows:

z← 𝜁z + 𝛽
𝜕z

𝜕𝑡
𝜑(z) = 𝑡𝑎𝑛ℎ(z) // 𝜑(z) can be any activation function

and finally, after z is updated, the state node will apply an element-wise nonlinear function to z to get 𝜑(z) (which is
also the name of the fourth compartment). Note that, in the above, we see several of the node’s key constants defined,
i.e. 𝛽 or .beta (the strength of perturbation applied to the node’s z compartment), 𝛾𝑙𝑒𝑎𝑘 or .leak (the strength of the
amount of decay applied to the z compartment’s value), and 𝜁 or .zeta (the amount of recurrent carry-over or how
“stateful” the node is – if one sets the constant .zeta = 0, the node becomes “stateless”). prior(z) just refers to a
distribution function that can be applied to the z compartment (see Walkthrough #4 for how this is used/set). We see by
observing the above differential equation that a state node is primarily defined by the value of its z compartment and
how this compartment evolves over time is dictated by several factors including the other two compartments dz𝑡𝑑 and
dz𝑏𝑢 (𝜑′(z) refers to the first derivative of the SNode’s activation function 𝜑(z) which can be turned off if desired).
Note that multiple cables can feed into dz𝑡𝑑 and dz𝑏𝑢 (multiple deposits would be summed to create a final value for
either compartment).

3.2. Node and Cable Fundamentals 9
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As we can see in the above dynamics equations, a state node is simply a set of rate-coded neurons that update their
activity values according to a linear combination of several “pressures”, notably the two key pressures dz𝑡𝑑 (dz_td)
and dz𝑏𝑢 (dz_bu) which are practically identical except that dz_bu is a pressure (optionally) weighted by the state
node’s activation function derivative 𝜑′(z). In a state node, when you wire other nodes to it, the .step() function
will specifically assume that signals are only ever being deposited into either dz_td or dz_bu and NOT into z (or z)
and 𝜑(z) (or phi(z)), since these last two compartments being evolved according to the equations presented earlier
– note that if you accidentally “wire” another node to the z or phi(z) compartments, the SNode will simply ignore
those since its .step() function only assumes dz_td and dz_bu receive signals externally).

With the SNode above, you can already build a fully functional NGC system (for example, a Harmonium as in Walk-
through #6), however, there is one special node that we should also describe that will allow you to more easily construct
arbitrary predictive coding systems. This node is known as the error node (ENode) and, as seen in its API , it contains
the following key compartments – pred_mu, pred_targ, z, phi(z), and L or, formally, z𝜇, z𝑡𝑎𝑟𝑔, z, 𝜑(z), and 𝐿(z).
An error node is, in some sense, a convenience node because it is actually mathematically a simplification of a state
node that is evolved over a period of time (it is a derived “fixed-point” of a pool of neurons that compute mismatch
signals evolved over several simulation time steps) and is particularly useful when we want to simulate predictive cod-
ing systems faster (and when one is not concerned with the exact biological implementation of neurons that compute
mismatch signals but only with their emergent behavior).

The error node dynamics are considerably simpler than that of a state node (and, since they are driven by a derived
fixed-point calculation, they are stateless) and simply dictated by the following:

z = z𝜇 − z𝑡𝑎𝑟𝑔

𝜑(z) = 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦(z) // 𝜑(z) can be any activation function

𝐿(z) =
∑︁
𝑗

(z⊙ z)2𝑗 // Gaussian error neurons

where⊙ denotes elementwise multiplication and z𝑡𝑎𝑟𝑔 (or pred_targ) is the target signal (which can be accumulated
from multiple sources, i.e., if more than cable feeds into it, the set of deposits are summed to create the final compart-
ment value of pred_targ) and z𝜇 or (pred_mu) is the expectation of the target signal (which can also be the sum of
multiple deposits from multiple cables/sources, i.e., multiple deposits from multiple cables will be summed to calculate
the final value of pred_mu). Note that for 𝐿(z) (or L), we only depict one possible form that this compartment can
take – the Gaussian error neuron (which results in a local mean squared error loss) – although are forms are possible
(such as the Laplacian error neuron).

Below, we graphically depict the SNode (Left) and the ENode (Right):

notice that both diagrams indicate that multiple incoming signals (each indicated by a curved diamond-head arrow) are
summed within the cell body compartment they are deposited into with the Σ symbol. In the SNode, the signals dz_td

10 Chapter 3. Lesson 1: The Nodes-and-Cables System
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and dz_bu are combined by addition, i.e., + (in the light blue box), whereas in the ENode, the signals pred_targ and
pred_mu are combined by subtraction, i.e., − (in the red box) (they are contrasted to produce a mismatch/difference
signal).

While we do not touch on it in this tutorial lesson, a user could write their own custom nodes as well, making sure to
subclass the Node class and then define the dendritic calculation that they require within .step() and ensuring that
their custom node writes to the Node class’s core compartment data structures so that ngc-learn can effectively simulate
the node’s evolution over time. Writing one’s own custom node will be the subject of an upcoming ngc-learn tutorial
lesson.

3.2.2 The Cable

Given the above understanding of a node, all that remains is to combine pairs of them together with an object known
as the cable. Note that all cables fundamentally are responsible for one particular job: taking the information in one
compartment of one “source node”, doing something to this information (such as transforming with a bundle of synapses
via linear algebra operations), and then depositing this information into the compartment of another “destination node”.
To do this, there are two primary types of cables you should be familiar with: 1) the simple cable SCable, and 2) the
dense cable DCable. The simple cable simply transmits information directly from one node’s compartment to another
node’s compartment, simply multiplying the information from the source node by its scalar data member .coeff (by
default this is set to the value of 1). The dense cable, in contrast, is a bit more involved as it takes the information in
one node’s compartment and applies some variant of a linear transformation to this signal before depositing it into the
compartment of another node (if you wanted a cable to do something more complex than this, you could, as you can
for the Node class, write your own custom cable, but we leave this as the subject for a future upcoming tutorial lesson).

Building cables is primarily done with the wire_to() function of the Node class – using this function also makes the
destination node aware of the cable that connects to it. Let us say we have two state nodes a and b and we wanted to
wire them together such that the information in the z compartment of a is transformed along a dense cable and finally
deposited into the dz_td compartment of state node b. This could be done with the following code snippet (place the
code in a script named test_cable.py):

import tensorflow as tf
import numpy as np
from ngclearn.engine.nodes.snode import SNode

# create the initialization scheme (kernel) of the dense cable
init_kernels = {"A_init" : ("gaussian",0.025)}
dcable_cfg = {"type": "dense", "init_kernels" : init_kernels, "seed" : 69}

# note that the dim of a does NOT have to equal that of b if using a dense cable
a = SNode(name="a", dim=5, beta=1, leak=0.0, act_fx="identity")
b = SNode(name="b", dim=5, beta=1, leak=0.0, act_fx="identity")
a_b = a.wire_to(b, src_comp="z", dest_comp="dz_td", cable_kernel=dcable_cfg) # wire a to␣
→˓b

print("Cable {} of type *{}* transmits from:".format(a_b.name, a_b.cable_type))
print("Node {}.{}".format(a_b.src_node.name, a_b.src_comp))
print(" to ")
print("Node {}.{}".format(a_b.dest_node.name, a_b.dest_comp))

which would print to your terminal the following:

Cable a-to-b_dense of type *dense* transmits from:
Node a.z

(continues on next page)

3.2. Node and Cable Fundamentals 11
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(continued from previous page)

to
Node b.dz_td

Graphically, the above 2-node circut would look like what is depicted in the figure below.

Note that cables can auto-generate their own .name based on the source and destination node that they wire to (in the
case above, the cable a_b would auto-generate the name a-to-b_dense). If you want the cable that wires a to b to be
named something specific, you set the extra argument name in wire_to() to the desired string and force that cable to
take on the name you wish (make sure you choose a unique name). Furthermore, note that a DCable has two learnable
synaptic objects you can trigger depending on how you initialize the cable:

1) a matrix A representing the bundle of synaptic connections that will be used to transform the source node of the
cable and relay this information to the destination node of the cable, and

2) a bias vector b representing the shift added to the transformed output signal of the cable.

What, then, does the above a_b dense cable do mathematically? Let us label z compartment of node a as z𝑎 and the
dz_td of node b as dz𝑏𝑡𝑑. Given this labeling, the dense cable will perform the following transformation:

s𝑜𝑢𝑡 = z𝑎 ·A𝑎_𝑏

dz𝑏𝑡𝑑 = dz𝑏𝑡𝑑 + s𝑜𝑢𝑡

where · denotes a matrix/vector multiplication and A𝑎_𝑏 is the matrix containing the synapses connecting the compart-
ment z of node a to the dz_td compartment of node b. If we had initalized the DCable earlier to have a bias, like
so:

init_kernels = {"A_init" : ("gaussian",0.025), "b_init" : ("zeros")}

then the cable a_b would perform the following:

s𝑜𝑢𝑡 = z𝑎 ·A𝑎_𝑏 + b𝑎_𝑏

dz𝑏𝑡𝑑 = dz𝑏𝑡𝑑 + s𝑜𝑢𝑡

Notice that the last line in the above two equations also shows what each cable will ultimately to node b – they add in
their transformed signal s𝑜𝑢𝑡 to its dz𝑏𝑡𝑑 compartment.

If you want to verify that the cable you wired from a to b appears within node b’s .connected_cables data member,
you can add/write a print statement as follows:

12 Chapter 3. Lesson 1: The Nodes-and-Cables System
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print("Cables that connect to Node {}:".format(b.name))
for cable in b.connected_cables:

print(" => Cable: {}".format(cable.name))

which would print to the terminal:

Cables that connect to Node b:
=> Cable: a-to-b_dense

Note that nodes a and b do not have to have the same .dim values if you are wiring them together with a dense cable.
In addition, cables in ngc-learn are directional – if you wire node a to node b, this does NOT mean that node b is wired
to node a (you would have to call the wire_to() funciton again and create such a wire if this relationship is desired).

If you wanted to wire information directly from node a to node bWITHOUT transforming the information via synapses,
you can use a simple cable but, in order to do so, the .dim data member (the number of neurons) of a must be equal to
that of b. You could write the following code (in a script you name test_cable2.py):

import tensorflow as tf
import numpy as np
from ngclearn.engine.nodes.snode import SNode

# create the initialization scheme (kernel) of the simple cable
scable_cfg = {"type": "simple", "coeff": 1.0}

## Note that you could do the exact same thing with a dense cable using
## the two lines below but you would be wasting a matrix multiplication if so
# init_kernels = {"A_init" : ("diagonal",1)}
# dcable_cfg = {"type": "dense", "init_kernels" : init_kernels, "seed" : 69}

# note that the dim of a MUST be equal to b if using a simple cable
a = SNode(name="a", dim=5, beta=1, leak=0.0, act_fx="identity")
b = SNode(name="b", dim=5, beta=1, leak=0.0, act_fx="identity")
a_b = a.wire_to(b, src_comp="z", dest_comp="dz_td", cable_kernel=scable_cfg) # wire a to␣
→˓b

print("Cable {} of type *{}* transmits from:".format(a_b.name, a_b.cable_type))
print("Node {}.{}".format(a_b.src_node.name, a_b.src_comp))
print(" to ")
print("Node {}.{}".format(a_b.dest_node.name, a_b.dest_comp))

which would print to your terminal the following:

Cable a-to-b_simple of type *simple* transmits from:
Node a.z
to
Node b.dz_td

Wiring nodes with cables using the .wire_to() routine notably returns the cable that it creates (in our code snippet
this was stored in the variable a_b). This is particularly useful if you need/want to set other properties of the generated
cable object such as local Hebbian synaptic update rules, constraints to be applied to the cable’s synapses, or synaptic
value decay.

3.2. Node and Cable Fundamentals 13
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3.3 Building Circuits with Nodes with Cables

Once you have created a set of nodes and wired them together in some meaningful fashion, your circuit is now ready
to be simulated. To make the circuit function as a complete NGC dynamical system, you must place your nodes into
ngc-learn’s simulation object, i.e., the NGCGraph. This object will, once you have initialized it and made it aware of
the nodes you want to simulate, run some basic checks for coherence, internally configure the computations that will
drive the simulation that can leverage Tensorflow 2 static graph optimization (you can turn this off if you do not want
this optimization to happen), and trigger the compilation routines inherent to each node and cable.

Specifically, if you wanted to compile the simple circuit you created in the last section into a simulated NGC graph,
you would then need to write the following (you could add the following lines of code to your test_cable.py or
test_cable2.py scripts if you like to test the compile routine):

from ngclearn.engine.ngc_graph import NGCGraph

circuit = NGCGraph()
circuit.set_cycle(nodes=[a,b]) # make the graph aware of nodes a and b, in that order
circuit.compile(batch_size=1)

where we see that the graph circuit is made aware of nodes a and b through the call to .set_cycle() which takes
in as argument a list of Node objects. Notice that we do not have to explicitly tell the NGCGraph about the cable a_b we
created – the NGCGraph will automatically handle the cable a_b through the .connected_cables data member of all
nodes it is made aware. The .compile() routine will desirably do most of the heavy-lifting without much input from
the user except for a few small arguments if desired. For example, in the code snippet above, we set the batch_size
argument directly (the default for an NGCGraph if you do not set it is also 1), which is needed for the default static
graph optimization that the NGCGraph will set up after you call .compile() – note this also means you must make
sure that the (mini-)batch size of all sensory inputs you provide to the NGCGraph are the of length batch_size (since
ngc-learn makes use of in-place memory operators to speed up simulation and play nicely with Tensorflow’s static
graph functionality).

If you do not wish to use the default static graph optimization and be able to deal with variable-length mini-batches of
data, then you can replace the above call to .compile() by setting its use_graph_optim argument to False (which
has the trade-off that your simulations being slower).

Note that you can always “re-compile” an NGCGraph anytime you want. For example, you wish to use the static graph
optimization to speed up the training of your NGCGraph circuit (since that is the most expensive part of simulating a
stateful neural system) but would like to reuse the trained graph on some new pool of data samples with a different
mini-batch size (or even, say, online, where you feed in samples to the circuit one at a time). You would simply write
the code snippet exactly as we did earlier, run your simulation of the training process, and then, after your code decides
that training is done, you could then simply re-compile your simulation object to be dynamic (switching to Tensorflow
eager execution mode) as follows:

circuit.compile(use_graph_optim=False) # re-compile "circuit" to work w/ dynamic batch␣
→˓sizes

and you can then present inputs to your simulation object of any batch size you wish. Alternatively, if you still wanted
the benefit of the speed offered by static graph optimization but just want to change the batch size to something different
than what was used during training (say you have a test set you want to sample mini-batches of 128 samples instead),
then you would write the following line:

## NOTE: you can also re-compile your circuit to become a system with the same synaptic
## parameters but static-graph optimized for a different fixed batch size (w/o speed␣
→˓loss)
circuit.compile(batch_size=128) # <-- note all future batches of data must be length 128
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re-compiling (as in the above two cases) provides some flexibility to the experimenter/developer although a small setup
cost is paid each the .compile() routine is called.

Also, it is important to be aware that the NGCGraph itself internally maintains several data structures that help it keep
track of the simulated nodes/cables, allow it to compute any desired synaptic updates, and ensure that the internal
dynamics interact properly with Tensorflow’s static graph optimization while still providing inspectability for the ex-
perimenter among other activities. One particular object that will be of interest to you, the experimenter, is the .theta
list, which is the implementation of the mathematical construct Θ often stated in statistical learning and applied math-
ematics that houses ALL of the learnable parameters (currently it would be empty in our case above because we have
not set any learning rules as we will later).

Given the above NGCGraph, you have now built your first, very own custom NGC system. All that remains is to learn
how to use an NGC system to process some data, which we will demonstrate in the next section.

3.3.1 Generating an NGCGraph Visualization

Currently, ngc-learn offers some basic support for generating a visualization of the system architecture that you cre-
ate with the nodes-and-cables system. This functionality is built on top of the two Python packages networkx and
pyviz to provide the user/experimenter some interactive flexibility with modifying the generated architecture/graph
visualizations before saving to disk.

To generate a graphical visualization of your NGCGraph, such as one for the 2-node circuit you built in the last section,
you would write the following code:

import ngclearn.utils.experimental.viz_graph_utils as viz

viz.visualize_graph(circuit) # generate the graph visual of

which will generate a graph/network visualization (after some minor manipulation from the user) similar to the one
below:

Notice that the node names we set earlier, e.g., a and b, are automatically extracted by the graph visualizer and the
cable names (normally auto-generated) by the NGCGraph graph object are attached to the edges they correspond to.
Furthermore, observe that you can directly interact with and manipulate (through clicking and dragging) the gener-
ated visualization to suit your purposes. Note: we recommend experimenting with the physics solver option to the
forceAtlas2Based or repulsion variants for more complex NGC network graphs.

The visualization scheme according to ngc-learn dictates that non-learnable cables are colored blue, dense cables are
solid arcs, and that state nodes are colored as as grey ellipses. See the end of this tutorial lesson for more details on the
graph color-coding scheme used by ngc-learn.

One important trick to cleaning up an NGCGraph’s visualization is to use the short_name optional argument to the
.wire_to() function. Specifically, setting a short_name for a particular cable that wires together two nodes allows
you to assign “nicknames” to cables while preserving their original auto-generated names (though you can also directly
set the names yourself using the name argument in the .wire_to() routine if you like, just ensure your name choices
are unique). For example, we could have created the cable a_b earlier with a short_name like so:
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a_b = a.wire_to(b, src_comp="z", dest_comp="dz_td", cable_kernel=scable_cfg, short_name=
→˓"W1")

If you run the visualizer now but with the short_name we set above, you will get the following output:

where now W1 is used in place of the original a-to-b_dense auto-generated name.

3.4 Simulating an NGC Circuit with Sensory Data

In this section, we will illustrate two ways in which one may have an NGCGraph interact with sensory data patterns. Let
us start by building a simple 3-node circuit, i.e., the one depicted in the figure below (only the relevant compartments
in each node that we will wire together are depicted).

Create a Python file/script named circuit1.py and write the following to create the header:

import tensorflow as tf
import numpy as np

# import building blocks
(continues on next page)
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(continued from previous page)

from ngclearn.engine.nodes.snode import SNode
# import simulation object
from ngclearn.engine.ngc_graph import NGCGraph

Now write the following code for your circuit:

integrate_cfg = {"integrate_type" : "euler", "use_dfx" : True}
a = SNode(name="a", dim=1, beta=1, leak=0.0, act_fx="identity",

integrate_kernel=integrate_cfg)
b = SNode(name="b", dim=1, beta=1, leak=0.0, act_fx="identity",

integrate_kernel=integrate_cfg)
c = SNode(name="c", dim=1, beta=1, leak=0.0, act_fx="identity",

integrate_kernel=integrate_cfg)

init_kernels = {"A_init" : ("diagonal",1)}
dcable_cfg = {"type": "dense", "init_kernels" : init_kernels, "seed" : 69}
a_b = a.wire_to(b, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=dcable_cfg)
c_b = c.wire_to(b, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=dcable_cfg)

circuit = NGCGraph(K=5)
# execute nodes in order: a, c, then b
circuit.set_cycle(nodes=[a,c,b])
circuit.compile(batch_size=1)

# do something with the circuit above
a_val = tf.ones([1, circuit.getNode("a").dim]) # create sensory data point *a_val*
c_val = tf.ones([1, circuit.getNode("c").dim]) # create sensory data point *c_val*
readouts, _ = circuit.settle(

clamped_vars=[("a","z",a_val), ("c","z",c_val)],
readout_vars=[("b","phi(z)")]

)
b_val = readouts[0][2]
print(" => Value of b.phi(z) = {}".format(b_val.numpy()))
print(" Expected = [[10]]")
circuit.clear()

The above (fixed) circuit will simply take in the current values within the phi(z) compartment of nodes a and c and
combine them together (through addition) within the dz_td compartment of node b. Specifically, the value within
the phi(z) compartment of a will be transformed with the dense cable a_b and deposited first into dz_td of b and
then the compartment phi(z) of c will be transformed by the dense cable c_b and added to the current value of and
deposited into the dz_td compartment of b. Notice that we set the graph to execute the nodes in a particular order: a,
c, b so that way we ensure that first the values within nodes a and c are first computed at any time step followed by
node b which will then take the current compartment values it needs from a and c and aggregate them to compute its
new state. Alternatively, you could write and set up the same exact computation by organizing the node computation
into two subsequent cycles as follows:

circuit = NGCGraph(K=5)
# execute nodes in order: a, c, then b
circuit.set_cycle(nodes=[a,c])
circuit.set_cycle(nodes=[b])
circuit.compile(batch_size=1)

where the above code-snippet is more explicit and, internally within the NGCGraph simulation object, means that a
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separate computation cycle will be created that must
wait on the first cycle (a then b) to be completed before it can then be executed (note that the overall simulation needed
for both would be the same when finally run).

Now go ahead and run your circuit1.py (i.e., $ python circuit1.py) and you should get the exact following
output in your terminal:

=> Value of b.phi(z) = [[10.]]
Expected = [[10.]]

The above output should make sense since we clamped to the phi(z) compartments of nodes a and c vectors of ones,
after we run the NGCGraph for K = 5 steps of simulation time within the call to .settle(), we should obtain a vector
with 10 inside of it for the phi(z) compartment of node b. This is because, at each time step within the .settle()
function, the dz_td compartment of node b is computed according to the following equation:

𝜕z𝑏

𝜕𝑡
= 𝜑(z𝑎) ·A𝑎_𝑏 + 𝜑(z𝑐) ·A𝑐_𝑏

= 1 ·A𝑎_𝑏 + 1 ·A𝑐_𝑏 = 1 · I + 1 · I
= (1 · 1) + (1 · 1) = 2

where I is the identity matrix (or diagonal matrix) of size (1,1) which is the same as the scalar 1 (because we set the
initialize of the A matrix within cables a_b and c_b to be the diagonal matrix). This means that at any time step, nodes
a and b are combined ultimately depositing a scalar value of 2 into node b’s dz_td compartment, which will then be
added according to b’s state dynamics: z𝑏 ← z𝑏 + 𝛽(dz𝑏𝑏𝑢 + dz𝑏𝑡𝑑) = z𝑏 + 𝛽(0 + dz𝑏𝑡𝑑).

If this calculation is repeated five times, as we have set the NGCGraph to do via the argument K=5, then the circuit
above is effectively repeatedly adding 2 to the z compartment of node b five times (2 * 5 = 10). Note that for node
b, phi(z) is identical to the value of z because we set the activation function of node b to be 𝜑(z) = z or act_fx =
identity (in fact, we have done this for all three nodes in this example).

Now, let us slightly modify the above 3-node circuit code to go one step below the application programming interface
(API) of the .settle() and write our own explicit step-by-step simulation so that way we can examine the value of the
z and phi(z) compartments of node b to prove that we are indeed accumulating a value of 2 each time step. To write
a low-level custom simulation loop that does the same thing as the code snippet we wrote earlier, you could replace the
call to .settle() with the following code instead:

# ... same initialization code as before ...

# do something with the circuit above
a_val = tf.ones([1, circuit.getNode("a").dim])
c_val = tf.ones([1, circuit.getNode("c").dim])

circuit.clamp([("a","z",a_val), ("c","z",c_val)])
circuit.set_to_resting_state()
for k in range(K):

values, _ = circuit.step(calc_delta=False)
circuit.parse_node_values(values)
b_val = circuit.extract("b","z")
print(" t({}) => Value of b.phi(z) = {}".format(k, b_val.numpy()))

print(" Expected = [[10.]]")
circuit.clear()

which will now print out to the terminal:
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t(0) => Value of b.phi(z) = [[2.]]
t(1) => Value of b.phi(z) = [[4.]]
t(2) => Value of b.phi(z) = [[6.]]
t(3) => Value of b.phi(z) = [[8.]]
t(4) => Value of b.phi(z) = [[10.]]

Expected = [[10.]]

showing us that, indeed, this circuit is incrementing the current value of the z compartment by 2 each time step. The
advantage to the above form of simulating the stimulus window for the 3-node instead of using .settle() is that one
can now explicitly simulate the NGC system online if needed. This lower-level way of simulating an NGC system
would be desirable for very long simulation windows where events might happen that interrupt or alter the settling
process.

One final item to notice is that, in all of the code-snippets of this section, after the NGCGraph has been simulated (either
through .settle() or online via .step()), we call the simulation objects .clear() routine. This is absolutely
critical to do after you simulate your NGC system for a fixed window of time IF you do not want the current values
of its internal nodes to carry over to the next time that you simulate the system with .settle() or .step(). Since
an NGC system is stateful, if you expect its internal neural activities to have gone back to their resting states (typically
zero vectors) before processing a new pattern or batch of data, then you must make sure that you call .clear(). A
typical design pattern for an NGC system would something like:

# ... initialize the circuit and your optimizer *opt* earlier ...

# after sampling some data, a typical process loop would be:
readouts, delta = circuit.settle( ... ) # conduct iterative inference
opt.apply_gradients(zip(delta, circuit.theta)) # update synapses
circuit.clear() # set all nodes in system back to their resting states

3.5 Evolving a Circuit over Time

3.5.1 Shared/Linked Cables

While cables are intended to be unique in that they instantiate a particular bundle of synapses that relay the information
from one node to another, it is sometimes desirable to allow two or more cables to reuse the exact same synapse
(pointing to the same spot in memory – in other words, they make use of a shallow copy of the synapses). This can
also be useful if one needs to reduce the memory footprint of their NGC system, e.g., for CPUs/GPUs with limited
memory. To facilitate sharing, you will need to use the mirror_path_kernel argument of the wire_to() function
you used earlier (in place of the cable_kernel argument). This argument takes in a 2-tuple where the first argument
is the literal cable object you want to share parameters with and the second argument is a string code/flag that tells
ngc-learn which parameters (and how) to share.

In ngc-learn, one can make two cables “share” a bundle of synapses, and even bias parameters, as follows (create a file
called circuit2.py to place the following code into):

import tensorflow as tf
import numpy as np

# import building blocks
from ngclearn.engine.nodes.snode import SNode
# import simulation object
from ngclearn.engine.ngc_graph import NGCGraph

(continues on next page)
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# create some nodes
a = SNode(name="a", dim=1, beta=1, leak=0.0, act_fx="identity")
b = SNode(name="b", dim=1, beta=1, leak=0.0, act_fx="identity")
x = SNode(name="x", dim=1, beta=1, leak=0.0, act_fx="identity")
y = SNode(name="y", dim=1, beta=1, leak=0.0, act_fx="identity")

init_kernels = {"A_init" : ("gaussian",0.1)}
dcable_cfg = {"type": "dense", "init_kernels" : init_kernels, "seed" : 111}

a_b = a.wire_to(b, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=dcable_cfg)
# make cable *x_y* reuse the *A* matrix contained in cable *a_b*
x_y = x.wire_to(y, src_comp="phi(z)", dest_comp="dz_td", mirror_path_kernel=(a_b,"A"))

print("Cable {} w/ synapse A = {}".format(a_b.name, a_b.params["A"].numpy()))
print("Cable {} w/ synapse A = {}".format(x_y.name, x_y.params["A"].numpy()))

and you should see printed to your terminal:

Cable a-to-b_dense w/ synapse A = [[0.1918097]]
Cable x-to-y_dense w/ synapse A = [[0.1918097]]

where we see that the cables a_b and x_y do indeed have the exact same synaptic matrix of size 1 x 1 even though
the cables themselves are completely different and even connect completely different nodes (note that you would need
to make sure the .dim of node x is identical to node a and that the .dim of node y is the same as node b, otherwise,
you will get a shaping error when the cable is later simulated).

There are other ways to share/point to synapses besides the direct way above. For example, the code below will force
cable b_a to reuse the transpose of the A synaptic matrix of cable a_b, as indicated by the second code/flag A^T input
to the mirror_path_kernel argument:

a_b = a.wire_to(b, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=dcable_cfg)
# make cable *b_a* that reuses the transpose of the *A* matrix contained in cable *a_b*
b_a = b.wire_to(a, src_comp="phi(z)", dest_comp="dz_td", mirror_path_kernel=(a_b,"A^T"))

Other useful codes for the mirror_path_kernel argument include: A+b which shares the A matrix and bias b of the
target cable and -A^T which shares the negative transpose of matrix A of the target cable.

3.5.2 Synaptic Update Rules

A key element of an NGC system is its ability to evolve with time and learn from the data patterns it processes by
updating its synaptic weights. To update the synaptic bundles (and/or biases) inside the cables you use to wire together
nodes, you will need to also define corresponding learning rules. Currently, ngc-learn assumes that synapses are
adjusted through locally-defined multi-factor Hebbian rules.

To configure a cable, particularly a dense cable, to utilize an update rule, you need to specify the following with the
set_update_rule() routine:

a_b = a.wire_to(b, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=dcable_cfg)
a_b.set_update_rule(preact=(a,"phi(z)"), postact=(b,"phi(z)"), param=["A"])

where we must define at least three arguments:

1) the pre-activation term preact which must be a 2-tuple containing the pre-activation node object and a string
stating the compartment that we want to extract a vector signal from,
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2) the post-activation term postact defined exactly the same as the pre-activation term, and

3) a list of strings param stating the synaptic parameters we want the update rule to affect. The code-snippet above
will tell ngc-learn that when cable a_b is updated, we would like to take the (matrix) product of node a’s phi(z)
compartment and node b’s phi(z) compartment and specifically adjust matrix A within the cable.

If cable a_b also contained a bias, we would specify the rule as follows:

a_b = a.wire_to(b, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=dcable_cfg)
a_b.set_update_rule(preact=(a,"phi(z)"), postact=(b,"phi(z)"), param=["A", "b"])

and ngc-learn will intelligently realize that synaptic vector b of cable a_b will be updated using only the post-activation
term postact (since it is a vector and not a matrix like A).

Using the .set_update_rule() function on each cable that you would like to evolve or be updated given data is all
that you need to do to set up local learning. The NGCGraph will automatically become aware of the valid cables linking
nodes that are learnable and, internally, call those cables’ update rules to compute the correct synaptic adjustments.
In particular, whenever you call .settle() on an NGCGraph, the simulation object will actually compute ALL of the
synaptic adjustments at the end of the simulation window and store them into a list delta and return them to you.

For example, you want to compute the Hebbian update for the cable a_b earlier (that you wrote for circuit2.py)
given a data point containing the value of one (create a new file and write the code below into circuit3.py):

import tensorflow as tf
import numpy as np

from ngclearn.engine.nodes.snode import SNode # import building blocks
from ngclearn.engine.ngc_graph import NGCGraph # import simulation object

# create the initialization scheme (kernel) of the dense cable
init_kernels = {"A_init" : ("gaussian",0.1)}
dcable_cfg = {"type": "dense", "init_kernels" : init_kernels, "seed" : 111}

a = SNode(name="a", dim=1, beta=1, leak=0.0, act_fx="identity")
b = SNode(name="b", dim=1, beta=1, leak=0.0, act_fx="identity")
a_b = a.wire_to(b, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=dcable_cfg)
a_b.set_update_rule(preact=(a,"phi(z)"), postact=(b,"phi(z)"), param=["A"])

print("Cable {} w/ synapse A = {}".format(a_b.name, a_b.params["A"].numpy()))

circuit = NGCGraph()
# execute nodes in order: a, c, then b
circuit.set_cycle(nodes=[a,b])
circuit.compile(batch_size=1)

opt = tf.keras.optimizers.SGD(0.01)

# do something with the circuit above
a_val = tf.ones([1, circuit.getNode("a").dim]) # create sensory data point *a_val*
readouts, delta = circuit.settle(

clamped_vars=[("a","z",a_val)],
readout_vars=[("b","phi(z)")]

)
opt.apply_gradients(zip(delta, circuit.theta))
circuit.clear()

(continues on next page)
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print("Update to cable {} is: {}".format(a_b.name, delta[0].numpy()))

which would print to your terminal:

Update to cable a-to-b_dense is: [[-0.9590485]]

Notice that we have demonstrated how ngc-learn interacts with Tensorflow 2 optimizers by simply giving the returned
delta list and the circuit’s internal .theta list to the optimizer which will then physically adjust the values of synaptic
bundles themselves for you. NOTE that the order of Hebbian updates will be returned in the exact same order as the
learnable parameters that .theta points to.

The above NGC system is, of course, rather naive as we would effectively be calculating and update the single synapses
that connects nodes a and b, and, since this use of the update rule is classical Hebbian, the value of the synapse inside
of A of cable a_b would grow indefinitely. In the next section, we will craft a more interesting circuit that uses what
you learned about with respect cables and nodes, including the error node ENode.

3.6 Constructing a Convergent 5-Node Circuit

As our final exercise for this tutorial, let us build a 5-node circuit that attempts to learn how to converge to a state such
that a five-dimensional node a and a six-dimensional node b each generate three-dimensional output values
that are nearly identical. In other words, we want node a to get good at predicting the output of node b and node b to
get good at predicting the output of node a. Furthermore, node b’s z compartment will always be clamped to a vector
of ones. To measure the mismatch between these two nodes’ predictions, we will introduce the fifth and final node as
a three-dimensional error node tasked with computing how far off the two sources nodes are from each other.

We illustrate the 5-node circuit in the figure below. The relevant compartments that we will be wiring together are
shown as different-colored circles (and the legend maps the color to the compartment name).
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To build this circuit, create a file called circuit4.py and write the header:

import tensorflow as tf
import numpy as np

# import building blocks
from ngclearn.engine.nodes.enode import ENode
from ngclearn.engine.nodes.snode import SNode
# import simulation object
from ngclearn.engine.ngc_graph import NGCGraph

and then go ahead and create the 5-node circuit we described as follows:

# create the initialization scheme (kernel) of the dense cable
init_kernels = {"A_init" : ("gaussian",0.1)}
dcable_cfg = {"type": "dense", "init_kernels" : init_kernels, "seed" : 111} # dense cable
scable_cfg = {"type": "simple", "coeff": 1.0} # identity cable

a_dim = 5
e_dim = 3
b_dim = 6

(continues on next page)
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# Define node a
a = SNode(name="a", dim=a_dim, beta=1, leak=0.0, act_fx="identity")
# Define node a_mu
a_mu = SNode(name="a_mu", dim=e_dim, beta=1, zeta=0, leak=0.0, act_fx="identity")
# Define error node e
e = ENode(name="e", dim=e_dim)
# Define node b
b = SNode(name="b", dim=b_dim, beta=1, leak=0.0, act_fx="identity")
# Define node b_mu
b_mu = SNode(name="b_mu", dim=e_dim, beta=1, zeta=0, leak=0.0, act_fx="identity")

# wire a to a_mu
a_amu = a.wire_to(a_mu, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=dcable_cfg)
a_amu.set_update_rule(preact=(a,"phi(z)"), postact=(e,"phi(z)"), param=["A"])
# wire a_mu to e
amu_e = a_mu.wire_to(e, src_comp="phi(z)", dest_comp="pred_mu", cable_kernel=scable_cfg)

# wire b to b_mu
b_bmu = b.wire_to(b_mu, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=dcable_cfg)
b_bmu.set_update_rule(preact=(b,"phi(z)"), postact=(e,"phi(z)"), param=["A"])
# wire b_mu to e
bmu_e = b_mu.wire_to(e, src_comp="phi(z)", dest_comp="pred_targ", cable_kernel=scable_
→˓cfg)

# wire e back to a
e_a = e.wire_to(a, src_comp="phi(z)", dest_comp="dz_bu", mirror_path_kernel=(a_amu,"A^T
→˓"))

# wire e back to b
e_b = e.wire_to(b, src_comp="phi(z)", dest_comp="dz_bu", mirror_path_kernel=(b_bmu,"A^T
→˓"))

circuit = NGCGraph()
# execute nodes in order: a, c, then b
circuit.set_cycle(nodes=[a, a_mu, b, b_mu])
circuit.set_cycle(nodes=[e])
circuit.set_learning_order([b_bmu, a_amu]) # enforces order - b_bmu then a_amu
circuit.compile(batch_size=1)

opt = tf.keras.optimizers.SGD(0.05)

and then, given the 5-node graph you crafted and compiled above, you can now write a simple training loop to simulate
as in below:

n_iter = 60 # number of overall optimization steps to take

b_val = tf.ones([1, circuit.getNode("b").dim]) # create sensory data point *b_val*
print("---- Simulating Circuit Evolution ----")
for t in range(n_iter):

readouts, delta = circuit.settle(
(continues on next page)
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(continued from previous page)

clamped_vars=[("b", "z",b_val)],
readout_vars=[("e", "L")]

)
e_val = readouts[0][2]
if t > 0:

print("\r{} => Value of e.L = {}".format(t, e_val.numpy()),end="")
else:

print("{} => Value of e.L = {}".format(t, e_val.numpy()))
opt.apply_gradients(zip(delta, circuit.theta))
circuit.clear()

print()

print("---- Final Results ----")
# get final values
readouts, delta = circuit.settle(

clamped_vars=[("b", "z",b_val)],
readout_vars=[("e", "pred_mu"),("e", "pred_targ")],
calc_delta=False # turn off update computation

)
prediction = readouts[0][2].numpy()
target = readouts[1][2].numpy()
print("Prediction: {}".format(prediction))
print(" Target: {}".format(target))
circuit.clear()

Once you have written circuit4.py, you can execute it from the command line as $ python circuit4.py which
should print to your terminal something similar to:

---- Simulating Circuit Evolution ----
0 => Value of e.L = [[0.03118673]]
59 => Value of e.L = [[3.9547285e-05]]
---- Final Results ----
Prediction: [[-2.2072585 -1.1418786 0.68785524]]

Target: [[-2.2125444 -1.1444474 0.6895305]]

As you can see, the loss represented by the error node e (specifically, the value stored in its loss L compartment), starts
at greater than 0.03 and then decreases over the sixty simulated training iterations to nearly zero (0.00003954), and,
as we can see in the comparison between the prediction from node a against the target produced by node b, the values
are quite close. This indicates that our small 5-node circuit has converged to an equilibrium point where node a and
node b are capable of matching each other (assuming that b’s z compartment will always be clamped to a vector of
ones). Furthermore, we see that we have crafted a feedback loop via cable e_a, which transmits the error information
contains inside of node e back to the dz_bu compartment of node a, which, as we recall from the earlier part of this
tutorial, is used in node a’s state update equation. (Feedback loop e_b does something similar to e_a, however, since
we force the z compartment of b to always be a specific value, this loop ends up being useful in this example).

With the completion of the above example, you have now gone through the process of crafting your own custom NGC
circuit with ngc-learn’s nodes-and-cables system. Given this knowledge, you are ready to design and simulate your
own predictive processing neural systems based on the NGC computational framework. For examples of how nodes
and cables are used to build various classical and modern-day models, check out the Model Museum (including the
pre-designed agents in the ngc-learn repo ngclearn/museum/) and the walk-throughs.
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3.7 Knowing the Utility Functions of an NGCGraph

Although you have learned of and how to assemble the key elements in ngc-learn needed to construct NGC circuits,
there are a few useful utility functions that are provided once you construct the NGCGraph simulation object. In this
closing section, we will briefly discuss each of these and briefly illustrate their use (and review key ones that we covered
earlier).

3.7.1 Compiling and Re-Compiling Your Simulation Object

As discussed earlier in this tutorial lesson, the .compile() is one of the most important functions to call after you have
constructed your NGCGraph as it will set up the crucial internal bookkeeping and checks to ensure that your simulated
NGC system works correctly with static graph optimization and is properly analyzable.

Normally, just calling the .compile() function after you initialize the NGCGraph constructor is sufficient so long as
you either set its batch_size argument to the batch size you will be training with (and you must ensure that your
data is presented to your graph in batch sizes with that exact same length each time, otherwise the NGCGraph will
throw a memory error). Note that you can also set the batch size your graph expects in the constructor itself, like so
NGCGraph(K=10, batch_size=128).

If you do not wish for ngc-learn to use static graph optimization, you can always turn this off by setting the
use_graph_optim to False in the .compile() function, which will allow you to use variable-length batch sizes
(and not force you to specify the batch_size in the compile routine or in the NGCGraph constructor) but this will
come at the cost of slower simulation time especially if you will be evolving the synapses over time (only in the case of
pure online learning might turning off the static graph optimization be useful). However, you can, as was discussed ear-
lier, always “re-compile” your simulation object if, for example, you will be training with mini-batches of one length
and then testing with mini-batches of another length. Re-compiling is simple and not too expensive to do if done
sparingly – all you need to do is call .compile() again and choose a new batch_size to give it as an argument.

One final note about the .compile() routine is that it actually returns a dictionary of dictionaries that con-
tains/organizes the core specifications of your NGCGraph. You can print this dictionary out if you like and examine
that the various nodes and cables state the various key properties you expect them to aid in debugging. Future plans
for ngc-learn will be to leverage this simulation properties dictionary to aid in auto-generated visualization to help in
creating architecture figures and possibly information-flow diagrams (we would also like to mention here that we wel-
come community contributions with respect to visualization and system analysis if you are interested in helping with
this particular effort).

3.7.2 Clearing the State of Your Simulator

Another core routine that you learned about in this tutorial is the .clear() function. This is a critical function to
call whenever you want to completely wipe out the state of your NGCGraph simulation object. Wiping graph state is
something you will likely want to do quite often in your code. For example, a typical design pattern for simulating an
NGC system after you sample a batch of training data points is to: 1) first call its .settle() function, 2) do something
with the readout variables you asked it to return (and maybe extract some other items from your graph), 3) update the
system’s synaptic weights (as housed in its .theta construct) using an external optimization algorithm like stochastic
gradient descent, 4) apply/enforce constraints, and 5) clear/wipe the graph state.

There are no arguments to .clear() but you should be aware that it does wipe the state of your graph thoroughly – this
also means that, after clearing, using a getter function .extract() (discussed in the next section) becomes meaningless
the internal bookkeeping structures that your graph maintains get set to their default (“empty”) states. Note that clearing
the graph state is NOT the same as setting nodes exactly to their resting state – node resting states are actually set with
a call to .set_to_resting_state() and this is actually done for you every time you call .settle() (unless you
tell your graph not to start at a resting state by setting the cold_start flag argument to False).
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Note that a use-case where you might not want to use the .clear() function is if you are simulating an NGC system
over one long, single window of time (for example, a sensory data stream). In this scenario, using .clear() would
be against the processing task as the neural system should be aware of its previous nodal compartment activities after
the last call to .settle() (you would want to also set cold_start to False in this situation). We remark that a
better alternative to using .settle() for streaming data applications is to, like we did early in this tutorial, work with
the lower-level API of your NGCGraph and just use its .step() routine which exactly simulates one discrete step of
time of your graph. This would allow you to set up “events” such as when you want .step() to return updates to
synapses (by setting the calc_delta argument to True if you do and False otherwise) and when you want node
compartments to go to their actual resting states with a call to .set_to_resting_state(). We caution the user that
leveraging the lower-level online functionality of an NGCGraph does require some degree of comfort with how ngc-learn
operates and care should be taken to check that your system is evolving in the way that you expect (working with the
online functionality of an NGC system will be the subject of a future advanced lesson). While it offers flexibility, the
.step() function also assumes that the experimenter will properly set the other functions that .settle() normally
takes care of automatically, such as .set_to_resting_state(), clamping, and injecting compartment values.

3.7.3 Setting the Order of Synaptic Adjustments

Normally, when you set update rules for cables that you would like to evolve with time, your NGCGraph will determine
its own order in which the calculated adjustments appear in the delta object (returned from .settle()) as well as
the order in which learnable parameters appear in the .theta data member. If you wanted the order of the cables to
appear in a certain way in .theta (which would affect the order of delta), you can use the .set_learning_order()
function before you call the .compile() routine for your NGCGraph.

This was actually done earlier in the last section, where you set the order of the cable parameters in .theta to be cable
b_bmu followed by cable a_amu as in the code snippet reproduced from earlier:

circuit.set_learning_order([b_bmu, a_amu]) # enforces order - b_bmu then a_amu

Setting the order of learnable cables directly affects what is returned by functions such as .settle() and .step()
since, internally, the NGCGraph will organize itself to ensure that the order of updates in delta exactly match the order
of learnable parameters stored in .theta. (Note: if a cable has a synaptic matrix A and bias b, then always the order
will be that cable’s A followed by b in .theta.)

3.7.4 Extracting Signals and Properties: Getter Functions

Two of the most important “getter” functions you will want to be familiar with when dealing with NGCGraph’s are
.extract() and .getNode().

The .extract() function is useful when you want to access particular values of your NGC system at a particular
instant. For example, let us say that you want to retrieve and inspect the value of the z compartment of the node a in
the 5-node circuit you built in the last section right. You would then utilize the .extract() methods as follows:

node_value = circuit.extract("a", "z")
print(" -> Inspecting value of Node a.z = {}".format(node_value.numpy()))

which would print to your terminal:

-> Inspecting value of Node a.z = [[-0.9275531 2.341278 0.2365013 1.2464949 0.
→˓76036114]]

NOTE: it is meaningless to call .extract() in the following two cases:

1) after you call .clear(), as .clear() will completely wipe the state of your NGCGraph, and
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2) not before you have simulated used your NGCGraph for any amount of time (if you have never simulated the
graph, then your graph has no signals of any meaning since it has never interact with data or an environment). If
you call .extract() in cases like those above, it will simply return None.

The .getNode() is useful if you have already compiled your NGCGraph simulation object and want to retrieve prop-
erties related to a particular node in this graph. For example, let us say that you want to determine the dimensionality
of the e node in your 5-node circuit of the last section. To do this, you would write the following code:

node = circuit.getNode("e")
print(" -> The dimensionality of Node e is {}".format(node.dim))

which would print to your terminal:

-> The dimensionality of Node e is 3

The .getNode() method will return the full Node object of the same exact name you input as argument. With this
object, you can query and inspect any of its internal data members, such as the .connected_cables as we did earlier
in this lesson.

3.7.5 Clamping and Injecting Signals: Setter Functions

The two “setter” functions that will you find most useful when working with the NGCGraph are .clamp() and .
inject(). Clamping and injecting, which both work very similarly, allow you to force certain compartments in certain
nodes of your choosing to take on certain values before you simulate the NGCGraph for a certain period of time. While
both of these initially place values into compartments, there is a subtle yet important difference in the effect each has on
the graph over time. Desirably, both of these functions take in a list of arguments, allowing you clamp or inject many
items at one time if needed.

In the event that you want a particular node’s compartment to take on a specific set of values and remain fixed at these
values throughout the duration of a simulation time window, then you want to use .clamp(). In our 5-node circuit
earlier, we in fact did this in our particular call to .settle() (which, internally, actually makes a call to .clamp() for
you if you provide anything to the clamped_vars argument), but you could, alternatively, use the clamping function
explicitly if you need to as follows:

b_val = tf.ones([1, circuit.getNode("b").dim])
circuit.clamp([("b", "z", b_val)])
readouts, delta = circuit.settle(

readout_vars=[("e", "pred_mu"),("e", "pred_targ")],
calc_delta=False # turn off update computation

)

node_value = circuit.extract("b", "z")
print(" -> Inspecting value of Node b.z = {}".format(node_value.numpy()))

which will, through each step of simulation conducted within the .settle() force the z compartment of node b to
ALWAYS remain at the value of b_val (this vector of ones will persist throughout the simulation time window). The
result of this code snippet prints to terminal the following:

-> Inspecting value of Node b.z = [[1. 1. 1. 1. 1. 1.]]

This is as we would expect – we literally clamped a vector of six ones to z of node b and would expect to observe that
this is still the case at the end of simulation.

If, in contrast, you only want to initialize a particular node’s compartment to start at a specific value but not necessarily
remain at this value, you will want to use .inject(). Doing so looks like code below:
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b_val = tf.ones([1, circuit.getNode("b").dim])
circuit.inject([("b", "z", b_val)])
readouts, delta = circuit.settle(

readout_vars=[("e", "pred_mu"),("e", "pred_targ")],
calc_delta=False # turn off update computation

)

node_value = circuit.extract("b", "z")
print(" -> Inspecting value of Node b.z = {}".format(node_value.numpy()))

which looks nearly identical to the clamping code we wrote above. However, the result of this computation is quite
different as seen in the terminal output below:

-> Inspecting value of Node b.z = [[8.505673 8.249885 8.257135 7.7380524 8.38973 8.
→˓267948 ]]

Notice that the values within z of node b are NOT ones like we saw in our previous clamping example. This is because
this compartment only started at the first time step as a vector of ones but, according to the internal dynamics of node
b which are driven by the originally useless feedback loop/cable e_b we created earlier – recall, at the time, that we
wrote that this cable would do nothing because we clamped z in node b to a vector of ones. If we had instead injected
the vector of ones, this compartment in node b would indeed have evolved over time.

3.7.6 Enforcing Constraints

One final item that you may find important when simulating the evolution of an NGCGraph is the enforcing of con-
straints through the .apply_constraints() routine. For example, you want to ensure that the Euclidean norms of
the columns of a particular matrix A in one of your system’s cables never exceed a certain value (see Walkthrough #4
for a case that requires this constraint to be true).

To enforce a constraint on a particular cable, all you need to do is first make the desired cable aware of this constraint
like so:

a_amu = a.wire_to(a_mu, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=dcable_cfg)
constraint_cfg = {"clip_type":"norm_clip","clip_mag":1.0,"clip_axis":1}
a_amu.set_constraint(constraint_cfg)

then, whenever you call the .apply_constraints() of your NGCGraph simulation object, this constraint will inter-
nally be enforced/applied to the cable a_amu. Typically, this call looks like the following (using our 5-node circuit as
an example):

readouts, delta = circuit.settle(
clamped_vars=[("b", "z",b_val)],
readout_vars=[("e", "L")]

)
opt.apply_gradients(zip(delta, circuit.theta))
circuit.apply_constraints() # generally apply constraints after an optimizer is used...
circuit.clear()

where we see that we call .apply_constraints() AFTER the Tensorflow optimizer has been used to actually alter
the values of the synapses of the NGC system. If, after the SGD update had resulted in the norms of any of the columns
in the matrix A of cable a_amu to exceed the value of 1.0, then .apply_constraints() would further alter this
matrix to make sure it no longer violates this constraint.
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A Note on Synaptic Decay: Like norm constraints, weight/synapse decay is also treated as a (soft) constraint in an
NGCGraph. If you want to apply a small decay to a particular synaptic bundle matrix A in a particular cable, you can
easily do so by simply calling the .set_decay() function like so:

a_b.set_decay(decay_kernel=("l1",0.00005)) # apply L1 weight decay to *A* in cable *a_b*

which would apply a decay factor based on a centered Laplacian distribution ( or an L1 penalty). If you chose l2
instead, the decay factor applied would then be based on a centered Gaussian distribution (or an L2 penalty) over each
element in matrix A of cable a_b.

3.7.7 A Note on Graph Visualization

Earlier, we explored ngc-learn’s support for NGC architecture visualization, where we learned about the graph visualizer
and using the short_name argument to superimpose desired “nicknames” for particular cables (yielding a less cluttered
graph plot). As you build more complex graphs that combine different kinds of nodes, you will see other aspects of
ngc-learn’s node and cable coloring/visual depiction scheme rendered. In this note, we will briefly define the full
scheme:

1) dense cables (DCable) are solid arcs,

2) simple cables (SCable) are dashed arcs,

3) non-learnable/evolving cables are colored blue,

4) learnable/evolving cables are colored red,

5) state nodes are colored gainsboro (or a grayish color),

6) error nodes are colored mistyrose (or light reddish color) with slightly larger text,

7) forward nodes are colored lavender, and

8) spiking nodes are colored antiquewhite.

For example, a visualization of a hierarchical NGC generative model containing both state and error nodes would be
the following:
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Note that the plotted graph produced by the visualizer is always a directed graph. Furthermore, notice that the
visualize_graph()method returns a full networkx directed graph, amenable to all of the graph operations/network
analysis tools available to networkx graph objects. You can also alter the output path of the generated dynamic HTML
(*.html) object by modifying output_dir, which will also change the location of a GraphML object saved to disk
which is auto-named <name_of_your_ngcgraph>.graphml (for use with external graph analysis toolkits that can
read in the GraphML file format).

3.8 Conclusion

You now have successfully gone through the core details and functionality of ngc-learn’s nodes-and-cables system.
The next step is to build your own NGC systems/models for your own research projects and play with the pre-designed
systems in the Model Museum (and go through the walkthroughs). In future upcoming tutorial lessons, we will cover
topics such designing your own customs nodes or cables that interact with the nodes-and-cables system and working
with the low-level online functionality of simulated NGC systems.
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CHAPTER

FOUR

WALKTHROUGH 1: LEARNING NGC GENERATIVE MODELS

In this demonstration, we will learn how to use ngc-learn’s Model Museum to fit an NGC generative model, which is
also called a generative neural coding network (GNCN), to the MNIST database. Specifically, we will focus on training
three key models, each from different points in history, and estimate their marginal log likelihoods. Along the way, we
will see how to fit a prior to our models and examine how a simple configuration file can be set up to allow for easy
recording of experimental settings.

Concretely, after going through this demonstration, you will:

1. Understand how to import and train models from ngc-learn’s Model Museum.

2. Fit a density estimator to an NGC model’s latent space to create a prior.

3. Estimate the marginal log likelihood of three GNCNs using the prior-fitting scheme designed in this demonstra-
tion.

Note that the two folders of interest to this demonstration are:

• walkthroughs/demo1/: this contains the necessary scripts and configuration files

• walkthroughs/data/: this contains a zipped copy of the MNIST database arrays

4.1 Setting Up and Training a Generative System

To start, navigate to the walkthroughs/ directory to access the example/demonstration code and further enter the
walkthroughs/data/ sub-folder. Unzip the file mnist.zip to create one more sub-folder that contains a set of
numpy arrays each house a different slice of the MNIST database, i.e., trainX.npy and trainY.npy compose the
training set (image patterns and their labels), validX.npyand validY.npy make up the development/validation set,
and testX.npyand testY.npy compose the test set. Note that pixels in all image vectors have been normalized for
you, to the range of [0,1].

Next, in walkthroughs/demo1/, observe the provided script sim_train.py, which contains the code to execute
the training process of an NGC model. Inside this file, we can export one of three possible GNCNs from ngc-learn’s
Model Museum, i.e., the GNCN-t1 (which is an instantiation of the model proposed in Rao & Ballard, 1999 [1]), the
GNCN-t1-Sigma (an instantiation of the model proposed in Friston 2008 [2]), and the GNCN-PDH (one of the models
proposed in Ororbia & Kifer 2022 [3]).

Importing models from the Model Museum is straightforward and only requires a few lines to be placed in the header
of a training script. Notice that we import several items besides the models, including a DataLoader, like so:

from ngclearn.utils.data_utils import DataLoader

some metrics, transformations, and other I/O tools, as follows:
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from ngclearn.utils.config import Config
import ngclearn.utils.transform_utils as transform
import ngclearn.utils.metric_utils as metric
import ngclearn.utils.io_utils as io_tools

where Config is an argument configuration object that reads in values set by the user in a *.cfg configuration file,
transform_utils contains mathematical functions to alter vectors/matrices (we will use the binarize() func-
tion, which, inside of sim_train.py, will convert the MNIST image patterns to their binary equivalents), and
metric_utils contains measurement functions (we will use the binary cross entropy routine bce()). Finally, we
import the models themselves, as shown below:

from ngclearn.museum.gncn_t1 import GNCN_t1
from ngclearn.museum.gncn_t1_sigma import GNCN_t1_Sigma
from ngclearn.museum.gncn_pdh import GNCN_PDH

With the above imported from ngc-learn, we have everything we need to craft a full training cycle as well as track a
model’s out-of-sample inference ability on validation data.

Notice in the script, at the start of our with-statement (which is used to force the following computations to reside
in a particular GPU/CPU), before initializing a chosen model, we define a second special function to track another
important quantity special to NGC models – the total discrepancy (ToD) – as follows:

def calc_ToD(agent):
"""Measures the total discrepancy (ToD) of a given NGC model"""
ToD = 0.0
L2 = agent.ngc_model.extract(node_name="e2", node_var_name="L")
L1 = agent.ngc_model.extract(node_name="e1", node_var_name="L")
L0 = agent.ngc_model.extract(node_name="e0", node_var_name="L")
ToD = -(L0 + L1 + L2)
return float(ToD)

This function is used to measure the internal disorder, or approximate free energy, within an NGC model based on its er-
ror neurons (since, internally, our imported models use the specialized ENode to create error neuron nodes, we retrieve
each node’s specialized compartment known as the scalar local loss L – for details on nodes and their compartments,
see Demonstration # 2 for details – but you could also compute each local loss with distance functions, e.g., L2 =
tf.norm( agent.ngc_model.extract(node_name="e2", node_var_name="phi(z)"), ord=2 )). Measur-
ing ToD allows us to monitor the entire NGC system’s optimization process and make sure it is behaving correctly,
making progress towards reaching a stable fixed-point.

Next, we write an evaluation function that leverages a DataLoader and a NGC model and returns some useful problem-
specific measurements. In this demo’s case, we want to measure and track binary cross entropy across training itera-
tions/epochs. The evaluation loop can be written like so:

def eval_model(agent, dataset, calc_ToD, verbose=False):
"""

Evaluates performance of agent on this fixed-point data sample
"""
ToD = 0.0 # total disrepancy over entire data pool
Lx = 0.0 # metric/loss over entire data pool
N = 0.0 # number samples seen so far
for batch in dataset:

x_name, x = batch[0]
N += x.shape[0]
x_hat = agent.settle(x) # conduct iterative inference

(continues on next page)
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(continued from previous page)

# update tracked fixed-point losses
Lx = tf.reduce_sum( metric.bce(x_hat, x) ) + Lx
ToD = calc_ToD(agent) + ToD # calc ToD
agent.clear()
if verbose == True:

print("\r ToD {0} Lx {1} over {2} samples...".format((ToD/(N * 1.0)), (Lx/
→˓(N * 1.0)), N),end="")
if verbose == True:

print()
Lx = Lx / N
ToD = ToD / N
return ToD, Lx

Notice that, in the above code snippet, we pass in the current NGC model (agent), the DataLoader (dataset), and the
ToD function we wrote earlier. Now we have a means to measure some aspect of the generalization ability of our NGC
model, all that remains is to craft a training process loop for NGC model. This loop could take the following form:

# create a training loop
ToD, Lx = eval_model(agent, train_set, calc_ToD, verbose=True)
vToD, vLx = eval_model(agent, dev_set, calc_ToD, verbose=True)
print("{} | ToD = {} Lx = {} ; vToD = {} vLx = {}".format(-1, ToD, Lx, vToD, vLx))

sim_start_time = time.time()
########################################################################
for i in range(num_iter): # for each training iteration/epoch

ToD = 0.0 # estimated ToD over an epoch (or whole dataset)
Lx = 0.0 # estimated total loss over epoch (or whole dataset)
n_s = 0
# run single epoch/pass/iteration through dataset
####################################################################
for batch in train_set:

n_s += batch[0][1].shape[0] # track num samples seen so far
x_name, x = batch[0]
x_hat = agent.settle(x) # conduct iterative inference
ToD_t = calc_ToD(agent) # calc ToD
Lx = tf.reduce_sum( metric.bce(x_hat, x) ) + Lx
# update synaptic parameters given current model internal state
delta = agent.calc_updates()
opt.apply_gradients(zip(delta, agent.ngc_model.theta))
agent.ngc_model.apply_constraints()
agent.clear()

ToD = ToD_t + ToD
print("\r train.ToD {0} Lx {1} with {2} samples seen...".format(

(ToD/(n_s * 1.0)), (Lx/(n_s * 1.0)), n_s),
end=""
)

####################################################################
print()
ToD = ToD / (n_s * 1.0)
Lx = Lx / (n_s * 1.0)
# evaluate generalization ability on dev set

(continues on next page)
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vToD, vLx = eval_model(agent, dev_set, calc_ToD)
print("-------------------------------------------------")
print("{} | ToD = {} Lx = {} ; vToD = {} vLx = {}".format(

i, ToD, Lx, vToD, vLx)
)

The above code block represents the core training process loop but you will also find in sim_train.py a few other
mechanisms that allow for:

1) model saving/check-pointing,

2) an early-stopping mechanism based on patience, and

3) some metric/ToD tracking by storing and saving updated sets of scalar lists to disk. Taking all of the above
together, you can simulate the NGC training process after setting some chosen values in your *.cfg configuration
file, which is read in near the beginning of your training script. For example, in train_sim.py, you will see
some basic code that reads in an external experimental configuration *.cfg file:

options, remainder = getopt.getopt(sys.argv[1:], '', ["config=","gpu_id=","n_trials="])
# GPU arguments and configuration
cfg_fname = None
use_gpu = False
n_trials = 1
gpu_id = -1
for opt, arg in options:

if opt in ("--config"):
cfg_fname = arg.strip()

elif opt in ("--gpu_id"):
gpu_id = int(arg.strip())
use_gpu = True

elif opt in ("--n_trials"):
n_trials = int(arg.strip())

mid = gpu_id
if mid >= 0:

print(" > Using GPU ID {0}".format(mid))
os.environ["CUDA_VISIBLE_DEVICES"]="{0}".format(mid)
#gpu_tag = '/GPU:0'
gpu_tag = '/GPU:0'

else:
os.environ["CUDA_VISIBLE_DEVICES"]="-1"
gpu_tag = '/CPU:0'

save_marker = 1

# load in and build the configuration object
args = Config(cfg_fname) # contains arguments for the simulation

Furthermore, notice that the above code snippet contains a bit of setup to allow you to switch to a GPU of your choice
(if you set gpu_id to a value >= 0) or a CPU if no GPU is available (gpu_id should be set to -1). Notice that the
Config object reads in a /path/to/file_name.cfg text file and produces a queryable object that is backed by a
dictionary/hash-table.

The above code blocks/snippets can be found in train_sim.py which has been written for you to study and use/run
along with the provided example configuration scripts (notice for each model there one subfolder in /walkthroughs/
demo1/ for each of the three models for you to train, each with their own training script fit.cfg and analysis.cfg
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script). Let us go ahead and train one of each the three models that we imported into our training script at the start of
this demonstration. Run the following three commands as shown below:

$ python sim_train.py --config==gncn_t1/fit.cfg --gpu_id=0 --n_trials=1

$ python sim_train.py --config==gncn_t1_sigma/fit.cfg --gpu_id=0 --n_trials=1

$ python sim_train.py --config==gncn_pdh/fit.cfg --gpu_id=0 --n_trials=1

Alternatively, you can also just run the global bash script exec_experiments.sh that we have also provided in /
walkthroughs/demo1/, which will just simply execute the above three experiments sequentially for you. Run this
bash script like so:

$ ./exec_experiments.sh

As an individual script runs, you will see printed to the terminal, after each epoch, an estimate of the ToD and the
BCE over the full training sample as well as the measured validation ToD and BCE over the full development data
subset. Note that our training script retrieves from the walkthroughs/data/mnist/ folder (that you unzipped ear-
lier) only the training arrays, i.e., trainX.npy and trainY.npy, and the validation set arrays, i.e., validX.npy
and validY.npy. We will use the test set arrays testX.npy and testY.npy in a follow-up analysis once we have
trained each of our models above. After all the processes/scripts terminate, you can check inside each of the model
folders, i.e., walkthroughs/demo1/gncn_t1/, walkthroughs/demo1/gncn_t1_sigma/, and walkthroughs/
demo1/gncn_pdh/, and see that your script(s) saved/serialized to disk a few useful files:

• Lx0.npy: the BCE training loss for the training set over epoch

• ToD0.npy: the ToD measurement for the training set over epoch

• vLx0.npy: the validation BCE loss over epoch

• vToD0.npy: the validation ToD measurement loss over epoch

• model0.ngc: your saved/serialized NGC model (with best validation performance)

You can use then plot the numpy arrays using matplotlib or your favorite visualization library/package to create
curves for each measurement over epoch. The final object, the model object model0.ngc, is what we will use in the
next section to quantitatively evaluate how well our NGC models work as a generative models.

4.2 Analyzing a Trained Generative Model

Now that you have trained three NGC generative models, we now want to analyze them a bit further, beyond just the
total discrepancy and binary cross entropy (the latter of which just tells you how good the model is at auto-associative
reconstruction of samples of binary-valued data).

In particular, we are interested in measuring the marginal log likelihood of our models, or log p(x). In general, cal-
culating such a quantity exactly is intractable for any reasonably-sized model since we would have marginalize out the
latent variables Z = {z1, z2, z3} of each our generative models, requiring us to evaluate an integral over a continu-
ous space. However, though things seem bleak, we can approximate this marginal by resorting to a Monte Carlo estimate
and simply draw as many samples as we need (or can computationally handle) from the underlying prior distribution
inherent to our NGC model in order to calculate log p(x). Since the NGC models that we have designed/trained in
this demo embody an underlying directed generative model, i.e., p(x,Z) = p(x|z1) p(z1|z2) p(z2|z3) p(z3),
we can use efficient ancestral sampling to produce fantasy image samples after we query the underlying latent prior
p(z3).

Unfortunately, unlike models such as the variational autoencoder (VAE), we do not have an explicitly defined prior
distribution, such as a standard multivariate Gaussian, that makes later sampling simple (the VAE is trained with an
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encoder that forces the generative model to stick as close as it can to this imposed prior). An NGC model’s latent prior
is, in contrast to the VAE, multimodal and thus simply using a standard Gaussian will not quite produce the fantasized
samples we would expect. Nevertheless, we can, in fact, far more accurately capture an NGC model’s prior p(z3)
by treating it as a mixture of Gaussians and instead estimate its multimodal density with a Gaussian mixture model
(GMM). Once we have this learned GMM prior, we can sample from this model of p(z3) and run these samples
through the NGC graph via ancestral sampling (using the prebuilt ancestral projection function project()).

ngc-learn is designed to offer some basic support for density estimation, and for this demonstration, we will import and
use its GMM density estimator (which builds on top of scikit-learn’s GMM base model), i.e., ngclearn.density.
gmm. First, we will need to extract the latent variables from the trained NGC model, which simply requires us to adapt
our eval_model() function in our training script to also now return a design matrix where each row contains one
latent code vector produced by our model per data point in a sample pool. Specifically, all we need to write is the
following:

def extract_latents(agent, dataset, calc_ToD, verbose=False):
"""

Extracts latent activities of an agent on a fixed-point data sample
"""
latents = None
ToD = 0.0
Lx = 0.0
N = 0.0
for batch in dataset:

x_name, x = batch[0]
N += x.shape[0]
x_hat = agent.settle(x) # conduct iterative inference
lats = agent.ngc_model.extract(node_name, cmpt_name)
if latents is not None:

latents = tf.concat([latents,lats],axis=0)
else:

latents = lats
ToD_t = calc_ToD(agent) # calc ToD
# update tracked fixed-point losses
Lx = tf.reduce_sum( metric.bce(x_hat, x) ) + Lx
ToD = calc_ToD(agent) + ToD
agent.clear()
print("\r ToD {0} Lx {1} over {2} samples...".format((ToD/(N * 1.0)), (Lx/(N *␣

→˓1.0)), N),end="")
print()
Lx = Lx / N
ToD = ToD / N
return latents, ToD, Lx

Notice we still keep our measurement of the ToD and BCE just as an extra sanity check to make sure that any model we
de-serialize from disk yields values similar to what we measured during our training process. Armed with the extrac-
tion function above, we can gather the latent codes of our NGC model. Notice that in the provided walkthroughs/
demo1/extract_latents.py script, you will find the above function fully integrated and used. Go ahead and run
the extraction script for the first of your three models:

$ python extract_latents.py --config==gncn_t1/analyze.cfg --gpu_id=0

and you will now find inside the folder walkthroughs/demo1/gncn_t1/ a new numpy array file z3_0.npy, which
contains all of the latent variables for the top-most layer of your GNCN-t1 model (you can examine the configuration
file analyze.cfg to see what arguments we set to achieve this).
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Now it is time to fit the GMM prior. In the fit_gmm.py script, we have set up the necessary framework for you to do
so (using 18,000 samples from the training set to speed up calculations a bit). All you need to do at this point, still
using the analyze.cfg configuration, is execute this script like so:

$ python fit_gmm.py --config==gncn_t1/analyze.cfg --gpu_id=0

and after your fitting process script terminates, you will see inside your model directory walkthroughs/demo1/
gncn_t1/ that you have a de-serialized learned prior prior0.gmm.

With this prior model prior0.gmm and your previously trained NGC system model0.ngc, you are ready to finally
estimate your marginal log likelihood log p(x). The final script provided for you, i.e., walkthroughs/demo1/
eval_logpx.py, will do this for you. It simply takes your full system – the prior and the model – and calculates a
Monte Carlo estimate of its log likelihood using the test set. Run this script as follows:

$ python eval_logpx.py --config==gncn_t1/analyze.cfg --gpu_id=0

and after it completes (this step can take a bit more time than the other steps, since we are computing our estimate over
quite a few samples), in addition to outputting to I/O the calculated log p(x), you will see two more items in your
model folder walkthroughs/demo1/gncn_t1/:

• logpx_results.txt: the recorded marginal log likelihood

• samples.png: some visual samples stored in an image array for you to view/assess

If you cat the first item, you should something similar to the following (which should be the same as what was printed
to I/O when you evaluation script finished):

$ cat gncn_t1/logpx_results.txt
Likelihood Test:
log[p(x)] = -103.63043212890625

and if you open and view the image samples, you should see something similar to:

Now go ahead and re-run the same steps above but for your other two models, using the final provided configuration
scripts, i.e., gncn_t1_sigma/analyze.cfg and gncn_pdh/analyze.cfg. You should see similar outputs as below.

For the GNCN-t1-Sigma, you get a log likelihood of:

$ cat gncn_t1_sigma/logpx_results.txt
Likelihood Test:
log[p(x)] = -99.73319244384766

with images as follows:

For the GNCN-PDH, you get a log likelihood of:

$ cat gncn_t1_sigma/logpx_results.txt
Likelihood Test:
log[p(x)] = -97.39334106445312

with images as follows:
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For the three models above, we get log likelihood measurements that are desirably within the right ballpack of those
reported in related literature [3].

You have now successfully trained three different, powerful NGC generative models using ngc-learn’s Model Museum
and analyzed their log likelihoods. While these models work/perform well, there is certainly great potential for further
improvement, extensions, and alternative ideas and it is our hope that future research developments will take advantage
of the tools/framework provided by ngc-learn to produce even better results.

Note: Setting the --n_trials flag to a number greater than one for the above training scripts to run each simulation
for multiple, different experimental trials (each set of files/objects will be indexed by its trial number).

4.3 References

[1] Rao, Rajesh PN, and Dana H. Ballard. “Predictive coding in the visual cortex: a functional interpretation of some
extra-classical receptive-field effects.” Nature Neuroscience 2.1 (1999): 79-87. [2] Friston, Karl. “Hierarchical models
in the brain.” PLoS Computational Biology 4.11 (2008): e1000211. [3] Ororbia, A., and Kifer, D. The neural coding
framework for learning generative models. Nature Communications 13, 2064 (2022).
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CHAPTER

FIVE

WALKTHROUGH 2: CREATING CUSTOM NGC PREDICTIVE CODING
SYSTEMS

In this demonstration, we will learn how to craft our own custom NGC system using ngc-learn’s fundamental building
blocks – nodes and cables. After going through this demonstration, you will:

1. Be familiar with some of ngc-learn’s basic theoretical motivations.

2. Understand ngc-learn’s basic building blocks, nodes and cables, and how they relate to each other and how
they are put together in code. Furthermore, you will learn how to place these connected building blocks into a
simulation object to implement inference and learning.

3. Craft and simulate a custom nonlinear NGC model based on exponential linear units to learn how to mimic a
streaming mixture-based data generating process. In this step, you will learn how to design an ancestral projection
graph to aid in fantasizing data patterns that look like the target data generating process.

Note that the folder of interest to this demonstration is:

• walkthroughs/demo2/: this contains the necessary simulation script

5.1 Theoretical Motivation: Nodes, Compartments, and Cables

At its core, part of ngc-learn’s fundamental design is inspired by (neural) cable theory , where neurons, arranged in
complex connectivity structures, are viewed as performing dendritic calculations. In other words, a particular neuron
integrates information from different input signals (for example, those from other neurons), in often highly nonlinear
ways through a complex dendritic tree.

Although modeling a neuronal system through the lens of cable theory is certainly complex and intricate in of itself,
ngc-learn is built in this direction, starting with the idea a neuron (or a cluster of them) can be viewed as a node, or
Node (also see Node Model), and each bundle of synapses that connect nodes can be viewed as a cable, or Cable (also
see Cable Model). Each node has different, multiple “compartments” (which are named), which are regions or slots
inside the node that other nodes can deposit information/signals into. These compartments allow a node to collect
information from many different connected/related nodes and then, within its integration routine (or step()), decide
how to combine the different signals in order to calculate its own activity (loosely corresponding to a rate-coded firing
rate – we will learn how to model spike trains in a later demonstration). As a result, many nodes and cables yield an
NGC system where each node is itself, in general, a stateful computation (even if we are processing static data such as
images).
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5.2 Building and Simulating NGC Systems

5.2.1 The Building Blocks: Nodes and Cables

With the above aspect of ngc-learn’s theoretical framing in mind, we can craft connectivity patterns of our own by
deciding the form that each node and cable in our system will take. ngc-learn currently offers a few core nodes and
cable types (note ngc-learn is an evolving software framework, so more node/cable types are to come in future releases,
either through the NAC team or community contributions). The core node type set currently includes SNode, ENode,
and FNode (all inheriting from the Node base class) while the current cable type set includes DCable and SCable (all
inherited from the Cable base class).

An SNode refers to a stateful node (see SNode), which is one of the primary nodes you will work with when crafting
NGC systems. A stateful node contains inside of it a cluster (or block) of neurons, the number of which is controlled
through the dim argument. To initialize a state node, we simply invoke the following:

integrate_cfg = {"integrate_type" : "euler", "use_dfx" : True}
prior_cfg = {"prior_type" : "laplace", "lambda" : 0.001}
a = SNode(name="a", dim=64, beta=0.1, leak=0.001, act_fx="relu",

integrate_kernel=integrate_cfg, prior_kernel=prior_cfg)

where we notice that the above creates a state node with 64 neurons that will update themselves according to an Euler
integration step (step size of 0.1 and a leak of 0.001) and apply a relu post-activation to compute their post-activity
values. Furthermore, notice that a Laplacian prior has been place over the neural activities within the state a (weighted
by the strength coefficient lambda) – such a prior is meant to encourage neural activity values towards zero (yielding
sparser patterns). A state node, in ngc-learn 0.0.1, contains five key compartments: dz_td, dz_bu, z, phi(z), and
mask. z represents the actual state values of the neurons inside the node while the compartment phi(z) is the nonlinear
transform of z (indicating the application of the node’s encoded activation/transfer function, e.g., relu in the case of
node a in the example above). dz_td and dz_bu are state update compartments, where (vector) signals from other
nodes are deposited (and summed together vector-wise), with the notable exception that dz_bu can be weighted by
the first derivative of the activation function encoded into the state node (for example, in a above, signals deposited
into dz_bu are element-wise multiplied by the relu derivative, or d.phi(z)/d.z = d.relu(z)/d.z). While, in
principle, any node can be made to deposit into any compartment of another node, the intentional and primary use
of an SNode entails letting the node itself automatically update z and phi(z) according to the integration function
configured (such as Euler integration) while letting other nodes deposit signal values into dz_td and dz_bu. (This
demonstration will assume this form of operation.)

While a state node by itself is not all that interesting, when we connect it to another node, we create a basic computation
system where signals are passed from a source node to a destination node. To connect a node to another node, we need
to wire them together with a Cable, which can transform signals between them with a dense bundle of synapses (as in
the case of a DCable) or simply carry along and potentially weight by a fixed scalar multiplication (as in the case of
an SCable). For example, if we want to wire node a to a node b through a dense bundle of synapses, we would do the
following:

a = SNode(name="a", dim=64, beta=0.1, leak=0.001, act_fx="relu",
integrate_kernel=integrate_cfg, prior_kernel=prior_cfg)

b = SNode(name="b", dim=32, beta=0.05, leak=0.002, act_fx="identity",
integrate_kernel=integrate_cfg, prior_kernel=None)

init_kernels = {"A_init" : ("gaussian",0.025)}
dcable_cfg = {"type": "dense", "init_kernels" : init_kernels, "seed" : 69}
a_b = a.wire_to(b, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=dcable_cfg)

where we note that the cable/wire a_b, of type DCable (see DCable), will pull a signal from the phi(z) compartment
of node a and transmit/transform this signal along the synaptic parameters it embodies (a dense matrix where each
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synaptic value is randomly initialized from a zero-mean Gaussian distribution and standard deviation of 0.025) and
place the resultant signal inside the dz_td compartment of node b.

Currently, an SNode (in ngc-learn version 0.2.0), integrates over two compartments – dz_td (top-down pressure sig-
nals) and dz_bu (bottom-up potentially weighted signals), and finally combines them through a linear combination to
produce a full update to the internal state compartment z. Note that many external nodes can deposit signal values
into each compartment dz_td and dz_bu and each new deposit value is directly summed with the current value of the
compartment. For example, a five-node system/circuit could take the following form:

carryover_cable_cfg = {"type": "simple", "coeff": 1.0} # an identity cable
a = SNode(name="a", dim=10, beta=0.1, leak=0.001, act_fx="identity")
b = SNode(name="b", dim=5, beta=0.05, leak=0.002, act_fx="identity")
c = SNode(name="c", dim=2, beta=0.05, leak=0.0, act_fx="identity")
d = SNode(name="d", dim=2, beta=0.05, leak=0.0, act_fx="identity")
e = SNode(name="e", dim=15, beta=0.05, leak=0.0, act_fx="identity")

a_c = a.wire_to(c, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=dcable_cfg)
b_c = b.wire_to(c, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=dcable_cfg)
d_c = d.wire_to(c, src_comp="phi(z)", dest_comp="dz_bu", cable_kernel=carryover_cable_
→˓cfg)
e_c = e.wire_to(c, src_comp="phi(z)", dest_comp="dz_bu", cable_kernel=dcable_cfg)

where a and b both deposit signals (which will be summed) into the dz_td compartment of c while d and e deposit
signals into the dz_bu compartment of c. Crucially notice that we introduce the other type of cable from d to c,
i.e., an SCable (see SCable), which is a simple carry-over cable that we have merely configured (in the dictionary
carryover_cable_cfg) to only pass along information information from node d to c, simply multiplying the vector
by 1.0 (NOTE: if a simple cable is being used, the dimensionality of the source node and the destination node should
be exactly the same). Bear in mind that any general Cable object is directional – it only transmits in the direction of
its set wiring pattern (from src_comp of its source node to the dest_comp of the destination node). So if it is desired,
for instance, that information flows not only from a to c but from c to a, then one would need to directly wire node c
back to a following a similar pattern as in the code snippet above. Finally, note that when you wire together two nodes,
they each become aware of this wiring relationship (i.e., node a understands that it feeds into node c and node c knows
that a feeds into it).

To learn or adjust the synaptic cables connecting the nodes in the five-node system we created above, we need to
configure the cables themselves to use a local Hebbian-like update. For example, if we want the cable a_c to evolve
over time, we notify the node that it needs to update according to:

a_c.set_update_rule(preact=(a,"phi(z)"), postact=(c,"phi(z)"), param=["A"])

where the above sets a (two-factor) Hebbian update that will compute an adjustment matrix of the same shape as the
underlying synaptic matrix that connects a to c (essentially a product of post-activation values in a with post-activation
values in c). Notice that a pre-activation term (preact) requires a 2-tuple containing a target node object and a string
denoting which compartment within that node to extract information from to create the pre-synaptic Hebbian term.
(postact refers to the post-activation term, the argument itself following the same format at preact).

Beyond the SNode, we need to study one more important type of node – the ENode (see ENode). While, in principle,
one could build a complete NGC system with just state nodes and cables (which will be the subject of future walk-
throughs/tutorials), an important aspect of NGC computation we have not addressed is that of the error neuron,
represented in ngc-learn by an ENode. An ENode is a special type of node that performs a mismatch calculation (or
a computation that compares how far off one quantity is from another) and is, in fact, a mathematical simplification
of a state node known as a fixed-point. In short, one can simulate a mismatch calculation over time by simply model-
ing the final result such as the (vector) subtraction of one value from another. In ngc-learn (up and including version
0.2.0), in addition to z and phi(z), the ENode also contains the key following compartments: pred_mu, pred_targ,
and L. pred_mu is a compartment that contains a summation of deposits that represent an external signals that form
a “prediction” (or expectation) while pred_targ is a compartment that contains a summation of external signals that
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form a “target” (or desired value/signal). L is a useful compartment as this is internally calculated by the error node to
represent the loss function by which the fixed-point calculation is derived, i.e., in the case of simple subtraction where
pred_mu - pred_targ, this would mean that the error node is calculating the first derivative of the mean squared
error (MSE).

Now that we know how an error node works, let us create a simple 3-node circuit that leverages an error node mismatch
computation:

init_kernels = {"A_init" : ("gaussian",0.025)}
dcable_cfg = {"type": "dense", "init_kernels" : init_kernels, "seed" : 69}
pos_carryover = {"type": "simple", "coeff": 1.0}
neg_carryover = {"type": "simple", "coeff": -1.0}

# Notice that we make b and e have the same dimension (10) given that we
# want to wire their information exchange paths with SCable(s)

a = SNode(name="a", dim=20, beta=0.05, leak=0.001, act_fx="identity")
b = SNode(name="b", dim=10, beta=0.05, leak=0.002, act_fx="identity")
e = ENode(name="e", dim=10)

# wire the states a and b to error neurons/node e
a_e = a.wire_to(e, src_comp="phi(z)", dest_comp="pred_mu", cable_kernel=dcable_cfg)
b_e = b.wire_to(e, src_comp="z", dest_comp="pred_targ", cable_kernel=pos_carryover)

# wire error node e back to nodes a and b to provide feedback to their states
e.wire_to(a, src_comp="phi(z)", dest_comp="dz_bu", mirror_path_kernel=(a_e,"A^T"))
e.wire_to(b, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=neg_carryover)

# set up local Hebbian updates for a_e
a_e.set_update_rule(preact=(a,"phi(z)"), postact=(e,"phi(z)"), param=["A"])

where we see that node a deposits a prediction signal into the pred_mu compartment of e and node b deposits a target
signal into the pred_targ compartment of e (where a simple cable pos_carryover will just multiply this signal by
1 and dump it into the appropriate compartment). Notice that we have wired e back to a using a special flag/argument
in the wire_to() routine, i.e., mirror_path_kernel. This special argument simply takes in a 2-tuple where the first
element is the physical cable object we want to reuse while the second is a string flag telling ngc-learn how to re-use
the cable (in this case, A^T, which means that we use the transpose of the underlying weight matrix contained inside
of the dense cable a_e). Also observe that e has been wired back to node b with a simple cable that multiplies the
post-activation of e by -1. The above 3-node circuit we have built is illustrated in the diagram below.
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Before we turn our attention to simulating the interactions/processing of the above nodes and cables, there is one more
specialized node worthy of mention – the forward node or FNode (see FNode). This node is simple – it only contains
three compartments: dz, z, and phi(z). An FNode operates much like an SNode except that it fundamentally is
“stateless” – external nodes deposit signals into dz (where multiple deposits are vector summed) and then this value is
directly and automatically placed inside of z after which an encoded activation function is applied to compute phi(z).
Note that an SNode can be modified to also behave like an FNode by setting its argument .zeta (or the amount of
recurrent carry-over inside the neural state dynamics) equal to 0 and setting beta to 1. However, the FNode is a
convenience node and is often used to build an ancestral projection graph, of which we will describe later.

5.2.2 Simulating Connected Nodes as Systems with the NGCGraph

Now that we have a basic grasp as to how nodes and cables can be instantiated and connected to build neural circuits,
let us examine the final key step required to build an NGC system – the simulation object NGCGraph (see NGCGraph).

An NGCGraph is a general structure that will take in nodes that have been wired together with cables and simulate their
evolution/processing over time. This structure crucially allows us to specify the execution sequence of nodes (or order of
operations) within a discrete step of simulation time. It also provides several basic utility functions to facilitate analysis
of the internal nodes. In this demo, we will focus on the core primary low-level routines one will want to conduct most
simulations, i.e., set_cycle(), settle(), apply_constraints(), calc_updates(), clear(), and extract().
(Note that higher-level convenience functions that combine all of these functions together, like evolve(), could be
used, but we will not cover them in this demonstration.) Let us take the five node circuit we built earlier and place them
in a system simulation:

model = NGCGraph(K=5)
model.proj_update_mag = -1.0 # bound the calculated synaptic updates (<= 0 turns this␣
→˓off)
model.proj_weight_mag = 1.0 # constrain the Euclidean norm of the rows of each synaptic␣
→˓matrix
model.set_cycle(nodes=[a,b,c,d]) # execute nodes a through d (in order left to right)
model.set_cycle(nodes=[e]) # execute node e
model.apply_constraints() # immediately applies constraints to synapses after␣
→˓initialization
model.compile(batch_size=1)

where the above seven lines of code create a full NGC system using the nodes and cables we set before. The
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set_cycle() function takes in a list/array of nodes and tells the underlying NGCGraph system to execute them (in the
order of their appearance within the list) first at each step in time. Making multiple subsequent calls to set_cycle()
will add in addition execution cycles to an NGC system’s step. Note that one simulation step of an NGCGraph consists
of multiple cycles, executed in the order of their calls when the simulation object was initialized. For example, one
step of our “model” object above would first execute the internal .step() functions of a, b, c, then d in the first cycle
and then execute the .step() of e in the second cycle. Also observe that in our NGCGraph constructor, we have told
ngc-learn that simulations are only ever to be K=5 discrete time steps long. Finally note that, when you set execution
cycles for an NGCGraph, ngc-learn will examine the cables you wired between nodes and extract any learnable synaptic
weight matrices into a parameter object .theta.

The final item to observe in the code snippet above is the call to compile() routine. This function is run after putting
together your NGCGraph in order to ensure the entire system is self-coherent and set up to work correctly with the
underlying static graph compilation used by Tensorflow 2 to drastically speed up your code (Note: the compile()
routine and static graph optimization was integrated into ngc-learn version 0.2.0 onward.) The only argument you need
to set for compile() is the batch_size argument – you must decide what fixed batch size you will use throughout
simulation so that way ngc-learn can properly compile a static graph in order to optimize the underlying code for fast in-
place memory calculations and other computation graph specific items. Note that if you do not wish to use ngc-learn’s
static graph optimization, simply set the use_graph_optim to False via .compile(use_graph_optim=False),
which will allow you to use variable-length batch sizes (at the cost of a bit slower computation).

With the above code, we are now done building the NGC system and can begin using it to process and adapt to sensory
data. To make our five-node circuit process and learn from a single data pattern, we would then write the following:

opt = # ... set some TF optimization algorithm, such as SGD, here ...
x = tf.ones([1,10])
readouts = model.settle(

clamped_vars=[("c","z",x)],
readout_vars=[("a","phi(z)"),("b","phi(z)"),("d","phi(z)"),("e","phi(z)

→˓")]
)

print("The value of {} w/in Node {} is {}".format(readouts[0][0], readouts[0][1],␣
→˓readouts[0][2].numpy()))
# update synaptic parameters given current model internal state
delta = model.calc_updates()
opt.apply_gradients(zip(delta, model.theta)) # apply a TF optimizer here
model.apply_constraints()
model.clear() # reset the underlying node states back to resting values

where we have crafted a trivial example of processing a vector of ones (x), clamping this value to node c’s compartment
z (note that clamping means we fix the node’s compartment to a specific value and never let it evolve throughout
simulation), and then read out the value of the phi(v) compartment of nodes a, b, c, and e. The readout_vars
argument to settle() allows us to tell an NGCGraph which nodes and which compartments we want to observe after
it run its simulated settling process over K=5 steps. An NGCGraph saves the output of settle() into the readouts
variable which is a list of triplets of the form [(node_name, comp_name, value),...] and, in the example, above
we are deciding to print out the first node’s value (in its set phi(z) compartment). After the NGCGraph executes its
settling process, we can then tell it to update all learnable synaptic weights (only for those cables that were configured to
use a Hebbian update with set_update_rule()) via the calc_updates(), which itself returns a list of the synaptic
weight adjustments, in the order of the synaptic matrices the NGCGraph object placed inside of .theta.

Desirably, after you have obtained delta from calc_updates(), you can then use it with a standard Tensorflow 2
adaptive learning rate such as stochastic gradient descent or Adam. An important point to understand is that an NGC
system attempts to maximize its total discrepancy, which is a negative quantity that it would like to be at zero (meaning
all local losses within it have reached an equilibrium at zero) – this is akin to optimizing the approximate free energy
of the system. Internally, an NGCGraph will multiply the Hebbian updates by a negative coefficient to allow the user to
directly use an external minimizer from a library such as Tensorflow.
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After updating synaptic matrices using a Tensorflow optimizer, one then calls apply_constraints() to ensure any
weight matrix constraints are applied after updating, finally ending with a call to clear(), which resets the values of
all nodes in the NGCGraph back to zero (or a resting state). (Note that if you do not want the NGC system to reset
its internal nodes back to resting zero states, then simply do not call clear() – for example, on a long temporal data
stream such as a video feed, you might not want to reset the NGC system back to its zero-resting state until the video
clip terminates).

5.3 Learning a Data Generating Process: A Streaming NGC Model

Now that we familiarized ourselves with the basic mechanics of nodes and cables as well as how they fit within a sim-
ulation graph, let us apply our knowledge to build a nonlinear NGC generative model that learns to mimic a streaming
data generating process. Note that this part of the demonstration corresponds to the materials/scripts provided within
walkthroughs/demo2/.

In ngc-learn, within the generator module, there are a few data generators to facilitate prototyping and simulation
studies. Simulated data generating processes can be used in lieu of real datasets and are useful for early preliminary
experimentation and proof-of-concept demonstrations (in statistics, such experiments are called “simulation studies”).
In this demonstration, we will take a look at the MoG (mixture of Gaussians, see MoG) static data generating process.
Data generating processes in ngc-learn typically offer a method called sample() and, depending on the type of process
being used, with process-specific arguments. In the MoG process, we can initialize a non-temporal (thus “static”) process
as follows:

# ...initialize mu1, mu2, mu3, cov1, cov2, cov3...
mu_list = [mu1, mu2, mu3]
sigma_list = [cov1, cov2, cov3]
process = MoG(means=mu_list, covar=sigma_list, seed=69)

where the above creates a fixed mixture model of three multivariate Gaussian distributions (each component has an
equal probability of being sampled by default in the MoG object). In the demonstration script sim_dyn_train.py, you
can see what specific mean and covariance values we have chosen (for simplicity, we set our problem space to be two-
dimensional and have each covariance matrix designed to be explicitly diagonal). The advantage of a data generator
that we will exploit in this demonstration is the fact that it can be queried online, i.e., we can call its sample() function
to produce fresh data sampled from its underlying generative process. This will allow
us to emulate the scenario of training an NGC system on a data stream (as opposed to a fixed dataset like we did in the
first demonstration).

With the data generating process chosen and initialized, we now turn to our NGC generative model. The model we will
construct will be a nonlinear model with three layers – a sensory layer z0 and two latent neural variable layers z1 and
z2. The post-activation for z1 will be the exponential linear rectifier unit (ELU) while the second layer will be set to
the identity and bottle-necked to a two-dimensional code so we can visualize the top-most latents easily later. Our goal
will be train our NGC model for several iterations and then use it to synthesize/fantasize a new pool of samples, one
for each known component of our mixture model (since each component represents a “label”) where we will finally
estimate the sample mean and covariance of each particular pool to gauge how well the model has been fit to the mixture
process.

We create the desired NGC model as follows:

batch_size = 32
# create cable wiring scheme relating nodes to one another
wght_sd = 0.025 #0.025 #0.05
init_kernels = {"A_init" : ("gaussian",wght_sd)}
dcable_cfg = {"type": "dense", "init_kernels" : init_kernels, "seed" : 69}
pos_scable_cfg = {"type": "simple", "coeff": 1.0}

(continues on next page)
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(continued from previous page)

neg_scable_cfg = {"type": "simple", "coeff": -1.0}
constraint_cfg = {"clip_type":"norm_clip","clip_mag":1.0,"clip_axis":1}

z2_mu1 = z2.wire_to(mu1, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=dcable_cfg)
z2_mu1.set_constraint(constraint_cfg)
mu1.wire_to(e1, src_comp="phi(z)", dest_comp="pred_mu", cable_kernel=pos_scable_cfg)
z1.wire_to(e1, src_comp="z", dest_comp="pred_targ", cable_kernel=pos_scable_cfg)
e1.wire_to(z2, src_comp="phi(z)", dest_comp="dz_bu", mirror_path_kernel=(z2_mu1,"A^T"))
e1.wire_to(z1, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=neg_scable_cfg)

z1_mu0 = z1.wire_to(mu0, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=dcable_cfg)
z1_mu0.set_constraint(constraint_cfg)
mu0.wire_to(e0, src_comp="phi(z)", dest_comp="pred_mu", cable_kernel=pos_scable_cfg)
z0.wire_to(e0, src_comp="phi(z)", dest_comp="pred_targ", cable_kernel=pos_scable_cfg)
e0.wire_to(z1, src_comp="phi(z)", dest_comp="dz_bu", mirror_path_kernel=(z1_mu0,"A^T"))
e0.wire_to(z0, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=neg_scable_cfg)

# set up update rules and make relevant edges aware of these
z2_mu1.set_update_rule(preact=(z2,"phi(z)"), postact=(e1,"phi(z)"), param=["A"])
z1_mu0.set_update_rule(preact=(z1,"phi(z)"), postact=(e0,"phi(z)"), param=["A"])

# Set up graph - execution cycle/order
model = NGCGraph(K=K)
model.set_cycle(nodes=[z2,z1,z0])
model.set_cycle(nodes=[mu1,mu0])
model.set_cycle(nodes=[e1,e0])
model.apply_constraints()
model.compile(batch_size=batch_size)

which constructs the model the three-layer system, which we can also depict with the following ngc-learn design short-
hand:

Node Name Structure:
z2 -(z2-mu1)-> mu1 ;e1; z1 -(z1-mu0-)-> mu0 ;e0; z0

One interesting thing to note is that, in the sim_dyn_train.py script, we also create an ancestral projection graph
(or a co-model) in order to conduct the sampling we want to do after training. An ancestral projection graph
ProjectionGraph (see ProjectionGraph), which is useful for doing things like ancestral sampling from a directed
generative model, should generally be created after an NGCGraph object has been instantiated. Doing so, as seen in
sim_dyn_train.py, entails writing the following:

# build an ancestral sampling graph
z2_dim = model.getNode("z2").dim
z1_dim = model.getNode("z1").dim
z0_dim = model.getNode("z0").dim
# Set up complementary sampling graph to use in conjunction w/ NGC-graph
s2 = FNode(name="s2", dim=z2_dim, act_fx="identity")
s1 = FNode(name="s1", dim=z1_dim, act_fx="elu")
s0 = FNode(name="s0", dim=z0_dim, act_fx="identity")
s2_s1 = s2.wire_to(s1, src_comp="phi(z)", dest_comp="dz", mirror_path_kernel=(z2_mu1,"A
→˓"))
s1_s0 = s1.wire_to(s0, src_comp="phi(z)", dest_comp="dz", mirror_path_kernel=(z1_mu0,"A
→˓"))

(continues on next page)
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sampler = ProjectionGraph()
sampler.set_cycle(nodes=[s2,s1,s0])
sampler.compile()

Creating a ProjectionGraph is rather similar to creating an NGCGraph (notice that we chose to use FNode(s) since
they work well for feedforward projection schemes). However, we should caution that the design of a projection graph
should meaningfully mimic what one would envision is the underlying directed, acyclic generative model embodied
by their NGCGraph (it helps to draw out/visualize the dot-and-arrow structure you want graphically first, using similar
shorthand as we presented for our model above, in order to then extract the underlying generative model the system
implicitly learns). A few important points we followed for designing the projection graph above:

1) the number (dimensionality) of nodes should be the same as the state nodes in the NGC system, i.e., s2 corre-
sponds to z2, s1 corresponds to z1, and s0 corresponds to z0;

2) the cables connecting the nodes should directly share the exact synaptic matrices between each key layer of
the original NGC system, i.e., the cable s2_s1 points directly to/re-uses cable z2_mu1 and cable s1_s0 points
directly to/re-uses cable z1_mu0 (note that we use the special argument A in the wire_to() function that allows
directly shallow-copying/linking between relevant cables). Notice that we used another one of the NGCGraph
utility functions – getNode() – which directly extracts a whole Node object from the graph, allowing one to
quickly call its internal data members such as its dimensionality .dim.

With the above NGCGraph and ProjectionGraph now created, we can now train our model by sampling the MoG data
generator online as follows:

ToD = 0.0
Lx = 0.0
Ns = 0.0
alpha = 0.99 # fading factor
for iter in range(n_iterations):

x, y = process.sample(n_s=batch_size)
Ns = x.shape[0] + Ns * alpha

# conduct iterative inference & update NGC system
readouts, delta = model.settle(

clamped_vars=[("z0","z",x)],
readout_vars=[("mu0","phi(z)"),("mu1","phi(z)")]

)
x_hat = readouts[0][2]

ToD = calc_ToD(model) + ToD * alpha # calc ToD
Lx = tf.reduce_sum( metric.mse(x_hat, x) ) + Lx * alpha
# update synaptic parameters given current model internal state
for p in range(len(delta)):

delta[p] = delta[p] * (1.0/(x.shape[0] * 1.0))
opt.apply_gradients(zip(delta, model.theta))
model.apply_constraints()
model.clear()

print("\r{} | ToD = {} MSE = {}".format(iter, ToD/Ns, Lx/Ns), end="")
print()

where we track the total discrepancy (via a custom calc_ToD() also written for you in sim_dyn_train.py, much
as we did in Demonstration # 1) as well as the mean squared error (MSE). Notably, for online streams, we track a
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particularly useful form of both metrics – prequential MSE and prequential ToD – which are essentially adaptations of
the prequential error measurement [1] used to track the online performance of classifiers/regressors on data streams.
We will plot the prequential ToD at the end of our simulation script, which will yield a plot that should look similar to
(where we see that ToD is maximized over time):

Finally, after training, we will examine how well our NGC system learned to mimic the MoG by using the co-model
projection graph we created earlier. This time, our basic process for sampling from the NGC model is simpler than
in Demonstration # 1 where we had to learn a density estimator to serve as our model’s prior. In this demonstration,
we will approximate the modes of our NGC’s model’s prior by feeding in batches of test samples drawn from the MoG
process, about 64 samples per component, running them through the NGCGraph to infer the latent z2 for each sample,
estimate the latent mean and covariance for mode, and then use these latent codes to sample from and project through
our ProjectionGraph. This will get us our system’s fantasized samples from which we can estimate the generative
model’s mean and covariance for each pool, allowing us visually compare to the actual mean and covariance of each
component of the MoG process. This we have done for you in the sample_system() routine, shown below:

def sample_system(Xs, model, sampler, Ns=-1):
readouts, _ = model.settle(

clamped_vars=[("z0","z",tf.cast(Xs,dtype=tf.float32))],
readout_vars=[("mu0","phi(z)"),("z2","z")],
calc_delta=False

)
z2 = readouts[1][2]
z = z2
model.clear()
# estimate latent mode mean and covariance
z_mu = tf.reduce_mean(z2, axis=0, keepdims=True)
z_cov = stat.calc_covariance(z2, mu_=z_mu, bias=False)
z_R = tf.linalg.cholesky(z_cov) # decompose covariance via Cholesky
if Ns > 0:

eps = tf.random.normal([Ns, z2.shape[1]], mean=0.0, stddev=1.0, seed=69)
else:

eps = tf.random.normal(z2.shape, mean=0.0, stddev=1.0, seed=69)
# use the re-parameterization trick to sample this mode
Zs = z_mu + tf.matmul(eps,z_R)
# now conduct ancestral sampling through the directed generative model
readouts = sampler.project(

clamped_vars=[("s2","z", Zs)],
(continues on next page)
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readout_vars=[("s0","phi(z)")]
)

X_hat = readouts[0][2]
sampler.clear()
# estimate the mean and covariance of the sensory sample space of this mode
mu_hat = tf.reduce_mean(X_hat, axis=0, keepdims=True)
sigma_hat = stat.calc_covariance(X_hat, mu_=mu_hat, bias=False)
return (X_hat, mu_hat, sigma_hat), (z, z_mu, z_cov)

Note inside the sim_dyn_train.py script, we have also written several helper functions for plotting the latent vari-
ables, input space samples, and the data generator and model-estimated input means/covariances. We have set the
number of training iterations to be 400 and the online mini-batch size to be 32 (meaning that we draw 32 samples from
the MoG each iteration).

You can now execute the demonstration script as follows:

$ python sim_dyn_train.py

and you will see that our exponential linear model produces the following samples:

and results in the following fit (Right) as compared to the original MoG process (Left):
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Original Process NGC Model Fit

We observe that the NGC model does a decent job of learning to mimic the underlying data generating process, although
we can see it is not perfect as a few data points are not quite captured within its covariance envelope (notably in the
orange Gaussian blob in the top right of the plot).

Finally, we visualize our model’s latent space to see how the 2D codes clustered up and obtain the plot below:

Desirably, we observe that our latent codes have clustered together and yielded a sufficiently separable latent space (in
other words, the codes result in distinct modes where each mode of the MoG is represented a specific blob/grouping in
latent space.).

As a result, we have successfully learned to mimic a synthetic mixture of Gaussians data generating process with our
custom, nonlinear NGC system.
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CHAPTER

SIX

WALKTHROUGH 3: CREATING AN NGC CLASSIFIER

In this demonstration, we will learn how to create a classifier based on NGC. After going through this demonstration,
you will:

1. Learn how to use a simple projection graph as well as the extract() and inject() routines to initialize the
simulated settling process of an NGC model.

2. Craft and simulate an NGC model that can directly classify the image patterns in the MNIST database (from
Demonstration # 1), producing results comparable to what was reported in (Whittington & Bogacz, 2017).

Note that the folders of interest to this demonstration are:

• walkthroughs/demo3/: this contains the necessary simulation script

• walkthroughs/data/: this contains the zipped copy of the MNIST database arrays

6.1 Using an Ancestral Projection Graph to Initialize the Settling Pro-
cess

We will start by first discussing an important use-case of the ProjectionGraph – to initialize the simulated iterative
inference process of an NGCGraph. This is contrast to the use-case we saw in the last two walkthroughs where we used
the ancestral projection graph as a post-training tool, which allowed us to draw samples from the underlying directed
generative models we were fitting. This time, we will leverage the power of an ancestral projection graph to serve as a
simple, progressively improving model of initial conditions for an iterative inference process.

To illustrate the above use-case, we will focus on crafting an NGC model for discriminative learning (as opposed to
the generative learning models we built Walkthroughs # 1 and #2). Before working with a concrete application, as we
will do in the next section, let us just focus on crafting the NGC architecture of the classifier as well as its ancestral
projection graph.

Working with nodes and cables (see the last demonstration for details), we will build a simple hierarchical system that
adheres to the following NGC shorthand:

Node Name Structure:
z2 -(z2-mu1)-> mu1 ;e1; z1 -(z1-mu0-)-> mu0 ;e0; z0
Note that z3 = x and z0 = y, which yields a classifier

where we see will design an NGC predictive processing model that contains three state layers z0, z1, and z2 with the
special application-specific usage that, during training, z0 will be clamped to a label vector y (a one-hot encoding of
a single category out of a finite set – 1-of-C encoding, where C is the number of classes) and z2 will be clamped to a
sensory input vector x. Building the above NGC system entails writing the following:
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batch_size = 128
x_dim = # dimensionality of input space
y_dim = # dimensionality of output/target space
beta = 0.1
leak = 0.0
integrate_cfg = {"integrate_type" : "euler", "use_dfx" : True}
# set up system nodes
z2 = SNode(name="z2", dim=x_dim, beta=beta, leak=leak, act_fx="identity",

integrate_kernel=integrate_cfg)
mu1 = SNode(name="mu1", dim=z_dim, act_fx="identity", zeta=0.0)
e1 = ENode(name="e1", dim=z_dim)
z1 = SNode(name="z1", dim=z_dim, beta=beta, leak=leak, act_fx="relu6",

integrate_kernel=integrate_cfg)
mu0 = SNode(name="mu0", dim=y_dim, act_fx="softmax", zeta=0.0)
e0 = ENode(name="e0", dim=y_dim)
z0 = SNode(name="z0", dim=y_dim, beta=beta, integrate_kernel=integrate_cfg, leak=0.0)

# create cable wiring scheme relating nodes to one another
wght_sd = 0.02
init_kernels = {"A_init" : ("gaussian",wght_sd), "b_init" : ("zeros")}
dcable_cfg = {"type": "dense", "init_kernels" : init_kernels, "seed" : 1234}
pos_scable_cfg = {"type": "simple", "coeff": 1.0} # a positive cable
neg_scable_cfg = {"type": "simple", "coeff": -1.0} # a negative cable

z2_mu1 = z2.wire_to(mu1, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=dcable_cfg)
mu1.wire_to(e1, src_comp="phi(z)", dest_comp="pred_mu", cable_kernel=pos_scable_cfg)
z1.wire_to(e1, src_comp="z", dest_comp="pred_targ", cable_kernel=pos_scable_cfg)
e1.wire_to(z2, src_comp="phi(z)", dest_comp="dz_bu", mirror_path_kernel=(z2_mu1,"A^T"))
e1.wire_to(z1, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=neg_scable_cfg)

z1_mu0 = z1.wire_to(mu0, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=dcable_cfg)
mu0.wire_to(e0, src_comp="phi(z)", dest_comp="pred_mu", cable_kernel=pos_scable_cfg)
z0.wire_to(e0, src_comp="phi(z)", dest_comp="pred_targ", cable_kernel=pos_scable_cfg)
e0.wire_to(z1, src_comp="phi(z)", dest_comp="dz_bu", mirror_path_kernel=(z1_mu0,"A^T"))
e0.wire_to(z0, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=neg_scable_cfg)

# set up update rules and make relevant edges aware of these
z2_mu1.set_update_rule(preact=(z2,"phi(z)"), postact=(e1,"phi(z)"), param=["A","b"])
z1_mu0.set_update_rule(preact=(z1,"phi(z)"), postact=(e0,"phi(z)"), param=["A","b"])

# Set up graph - execution cycle/order
model = NGCGraph(K=5)
model.set_cycle(nodes=[z2,z1,z0])
model.set_cycle(nodes=[mu1,mu0])
model.set_cycle(nodes=[e1,e0])
model.compile(batch_size=batch_size)

noting that x_dim and y_dim would be determined by your input dataset’s sensory input design matrix X and its
corresponding label design matrix Y. Also notice that, in our classifier above, because we will generally be clamping
an input data vector (or batch of them) to z2, we chose to encode an identity activation function for that node (we
do not want to arbitrarily apply a nonlinear transform to the input). The activation function of the output prediction
node mu0 (which will attempt to predict the value of data clamped at z0, i.e., the “label node”) has been set to be the
softmax which will induce a soft form of competition among the neurons in mu0 and allow our NGC classifier to
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produce probability distribution vectors in its output.

The architecture above could then be readily simulated assuming that we always have an x and a y to clamp to its z2 and
z0 nodes. While it is possible to then run the same system in the absence of a y (as in test-time inference), we would have
to simulate the NGC system for a reasonable number of steps (which might be greater than the number of steps K chosen
to facilitate learning) or until convergence to a fixed-point (or stable attractor). While this approach is fine in principle,
it would be ideal for downstream application use if we could leverage the underlying directed generative model that the
above architecture embodies. Specifically, even though we crafted our model with discriminative learning as our goal,
the above system is still learning, “under the hood”, a generative model, specifically a conditional generative model of
the form p(y|x). Given this insight, we can take advantage of the fact that ancestral sampling through our model is
still possible, just with the exception that our input samples do not need to come from a prior distribution (as in the
case of the models in Walkthroughs # 1 and # 2) but instead from data patterns directly.

To build the corresponding ancestral projection graph for the architecture above, we would then (adhering to our NGC
shorthand and ensuring this co-model graph follows the information flow through our NGC system – a design princi-
ple/heuristic we discussed in Demonstration # 2) write the following:

# build this NGC model's sampling graph
z2_dim = ngc_model.getNode("z2").dim
z1_dim = ngc_model.getNode("z1").dim
z0_dim = ngc_model.getNode("z0").dim
# Set up complementary sampling graph to use in conjunction w/ NGC-graph
s2 = FNode(name="s2", dim=z2_dim, act_fx="identity")
s1 = FNode(name="s1", dim=z1_dim, act_fx=act_fx)
s0 = FNode(name="s0", dim=z0_dim, act_fx=out_fx)
s2_s1 = s2.wire_to(s1, src_comp="phi(z)", dest_comp="dz", mirror_path_kernel=(z2_mu1,"A
→˓"))
s1_s0 = s1.wire_to(s0, src_comp="phi(z)", dest_comp="dz", mirror_path_kernel=(z1_mu0,"A
→˓"))
sampler = ProjectionGraph()
sampler.set_cycle(nodes=[s2,s1,s0])
sampler.compile()

which explicitly instantiates the conditional generative embodied by the NGC system we built earlier, allowing us to
easily sample from it. If one wanted NGC shorthand for the above conditional generative model, it would be:

Node Name Structure:
s2 -(s2-s1)-> s1 -(s1-s0-)-> s0
Note: s3 = x, which yields the model p(s0=y|x)
Note: s2-s1 = z2-mu1 and s1-s0 = z1-mu0

where we have highlighted that we are sharing (or shallow copying) the exact synaptic connections (z2-mu1 and
z1-mu0) from the NGC system above into those of our directed generative model (s2-s1 and s1-s0). Note that,
after training the earlier NGC system on a database of images and their respective labels, we could then classify, at
test-time, each unseen pattern using the conditional generative model directly (instead of the settling process of the
original NGC system), like so:

y = # test label/batch sampled from the test-set
x = # test data point/batch sampled from the test-set
readouts = sampler.project(

clamped_vars=[("s2","z",x)],
readout_vars=[("s0","phi(z)")]

)
y_hat = readouts[0][2] # get probability distribution p(y|x)

Given our ancestral projection graph, we can now revisit our original goal of improving our NGC system’s learning
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process by tying together it back with the simulation system itself. To do so, all we need to do is make use of two
functions, i.e., extract() and inject(), provided by both the ProjectionGraph and NGCGraph objects. Tying
together the two objects would then work as follows (below we emulate one step of online learning):

y = # test label/batch sampled from the test-set
x = # test data point/batch sampled from the test-set

# first, run the projection graph
readouts = sampler.project(

clamped_vars=[("s2","z",x)],
readout_vars=[("s0","phi(z)")]

)

# second, extract data from the ancestral projection graph
s2 = sampler.extract("s2","z")
s1 = sampler.extract("s1","z")
s0 = sampler.extract("s0","z")

# third, initialize the simulated NGC system with the above information
model.inject([("mu1", "z", s1), ("z1", "z", s1), ("mu0", "z", s0)])

# finally, run/simulate the NGC system as normal
readouts, delta = model.settle(

clamped_vars=[("z2","z",x),("z0","z",y)],
readout_vars=[("mu0","phi(z)"),("mu1","phi(z)")]

)
y_hat = readouts[0][2]
for p in range(len(delta)):

delta[p] = delta[p] * (1.0/(x.shape[0] * 1.0))
opt.apply_gradients(zip(delta, model.theta))
model.clear()
sampler.clear()

where we see that, after we first run the ancestral projection graph, we then extract the internal values from the s1 and
s0 nodes (from their z compartments) and inject these into the relevant spots inside the NGC system, i.e., we place
the reading in the z compartment of s1 into the z compartment of mu1 and z1 (since we don’t want the error neuron
e1 to find any mismatch in the first time step of the settling process of model) and the z compartment of s0 into the z
compartment of mu0 (to ensure that, since we will be clamping y to the z compartment of z0, we want the mismatch
signal simulated to be the different between bottom layer prediction mu0 and the label at the very first time step of the
settling process of model). In short, we just want the initial conditions of the settling process for model to be such
that its state z1 matches the expectation mu1 of z2 (clamped to x) and the expectation mu0 of z1 is being initially
compared to the state of z0 (clamped to the label y). Note that when values are “injected” into a NGC system through
inject(), they will not persist after the first step of its settling process – they will evolve according to its current node
dynamics. If you did not want a node to evolve at all remain fixed at the value you embed/insert, then you would use the
clamp() function instead (which is what is being used internally to clamp variables in the clamped_vars argument
of the settle() function above).

In the figure below, we graphically what the above simulated NGC system and its corresponding conditional generative
model (ancestral projection graph) look like (the blue dashed arrow just point outs that the layer s1 of the generative
model is the same thing as the mean prediction mu1 of the original NGC model).
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The three-layer hierarchical classifier above turns out to be very similar to the one implemented in ngc-learn’s Model
Museum – the GNCN-t1-FFM, which is itself a four-layer discriminative NGC system that emulates the model inves-
tigated in [1]. We will import and use this slightly deeper model in the next part of this demonstration.

6.2 Learning a Classifier

Now that we have seen how to design an NGC classifier and build a projection graph that allows us to directly use the
underlying conditional generative model of p(y|x),
we have a powerful means to initialize our system’s internal nodes to something meaningful and task-specific (instead
of the default zero-vector initialization) as well as a fast label prediction model as an important by-product of the
discriminative learning that our code will be doing. Having a fast model for test-time inference is useful not only
for quickly tracking generalization ability throughout training (using a validation subset of data points) but also for
downstream uses of the learning generative model – for example, one could extract the synaptic weight matrices inside
the ancestral projection graph, serialize them to disk, and place them inside a multi-layer perceptron structure with the
same layer sizes/architecture built pure Tensorflow or Pytorch.

Specifically, we will fit a supervised NGC classifier using the labels that come with the processed MNIST dataset,
in mnist.zip (which you unzipped and worked with in Demonstration # 1). For this part of the demonstration,
we will import the full model of [1], You will notice in the provided training script sim_train.py, we import the
GNCN-t1-FFM (the NGC classifier model) in the header:
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from ngclearn.museum.gncn_t1_ffm import GNCN_t1_FFM

which is initialized as later in the code as:

args = # ...the Config object loaded in earlier...

agent = GNCN_t1_FFM(args) # set up NGC model

and then proceed to write/design a training process very similar in design to the one we wrote in Demonstration # 1.
The key notable differences are now that we are:

1. using labels along with the input sensory samples, meaning we need to tell the DataLoader management object
that there is a label design matrix to sample that maps one-to-one with the image design matrix, like so:

xfname = # ...the design matrix X file name loaded in earlier...
yfname = # ...the design matrix Y file name loaded in earlier...
args = # ...the Config object loaded in earlier...
batch_size = # ... number of samples to draw from the loader per training step ...

# load data into memory
X = ( tf.cast(np.load(xfname),dtype=tf.float32) ).numpy()
x_dim = X.shape[1]
args.setArg("x_dim",x_dim) # set the config object "args" to know of the dimensionality␣
→˓of x
Y = ( tf.cast(np.load(yfname),dtype=tf.float32) ).numpy()
y_dim = Y.shape[1]
args.setArg("y_dim",y_dim) # set the config object "args" to know of the dimensionality␣
→˓of y
# build the training set data loader
train_set = DataLoader(design_matrices=[("z3",X),("z0",Y)], batch_size=batch_size)

2. we are now using the NGC model’s ancestral projection graph to make label predictions in our eval_model()
function and we now globally track Acc instead of ToD (since the projection graph does not have a total discrep-
ancy quantity that we can measure) as well as Ly (the Categorical cross entropy of our model’s label probabilities)
instead of Lx. This is done (in eval_model()) as follows:

x = # ... image/batch drawn from data loader ...
y = # ... label/batch drawn from data loader ...

y_hat = agent.predict(x)

# update/track fixed-point losses
Ly = tf.reduce_sum( metric.cat_nll(y_hat, y) ) + Ly

# compute number of correct predictions in batch
y_ind = tf.cast(tf.argmax(y,1),dtype=tf.int32)
y_pred = tf.cast(tf.argmax(y_hat,1),dtype=tf.int32)
comp = tf.cast(tf.equal(y_pred,y_ind),dtype=tf.float32)
Acc += tf.reduce_sum( comp ) # update/track overall accuracy

3. we finally tie together the ancestral projection graph with the NGC classifier’s settling process during training.
This is done through the code snippet below:
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x = # ... image/batch drawn from data loader ...
y = # ... label/batch drawn from data loader ...

# run ancestral projection to get initial conditions
y_hat_ = agent.predict(x) # run p(y|x)
mu1 = agent.ngc_sampler.extract("s1","z") # extract value of s1
mu0 = agent.ngc_sampler.extract("s0","z") # extract value of s0

# set initial conditions for NGC system
agent.ngc_model.inject([("mu1", "z", mu1), ("z1", "z", mu1), ("mu0", "z", mu0)])

# conduct iterative inference/setting as normal
y_hat = agent.settle(x, y)
ToD_t = calc_ToD(agent) # calculate total discrepancy
Ly = tf.reduce_sum( metric.cat_nll(y_hat, y) ) + Ly

# update synaptic parameters given current model internal state
delta = agent.calc_updates()
opt.apply_gradients(zip(delta, agent.ngc_model.theta))
agent.ngc_model.apply_constraints()
agent.clear()

To train your NGC classifier, run the training script in /walkthroughs/demo3/ as follows:

$ python sim_train.py --config=gncn_t1_ffm/fit.cfg --gpu_id=0 --n_trials=1

which will execute a training process using the experimental configuration file /walkthroughs/demo3/
gncn_t1_ffm/fit.cfg written for you. After your model finishes training you should see a validation score similar
to the one below:

You will also notice that in your folder /walkthroughs/demo3/gncn_t1_ffm/ several arrays as well as your learned
NGC classifier have been saved to disk for you. To examine the classifier’s performance on the MNIST test-set, you
can execute the evaluation script like so:

$ python eval_model.py --config=gncn_t1_ffm/fit.cfg --gpu_id=0

which should result in an output similar to the one below:

Desirably, our out-of-sample results on both the validation and test-set corroborate the measurements reported in (Whit-
tington & Bogacz, 2017) [1], i.e., a range of 1.7-1.8% validation error was reported and our simulation yields a valida-
tion accuracy of 0.9832 * 100 = 98.32% (or 1.68% error) and a test accuracy of 0.98099 * 100 = 98.0899%
(or about 1.91% error), even though our predictive processing classifier/set-up differs in a few small ways:

1) we induce soft competition in the label prediction mu0 with the softmax (whereas they used the identity
function and softened the label vectors through clipping),

2) we work directly with the normalized pixel data whereas [1] transforms the data with an inverse logistic transform
(you can find this function implemented as inverse_logistic() in ngclearn.utils.transform_utils ),
and

3) they initialize their weights using a scheme based on the Uniform distribution (or the classic_glorot scheme
in ngclearn.utils.transform_utils). (Note that you can modify the scripts sim_train.py, fit.cfg,
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and eval_model.py to incorporate these changes and obtain similar results under the same conditions.)

Finally, since we have collected our training and validation accuracy measurements at the end of each pass through the
data (or epoch/iteration), we can run the following to obtain a plot of our model’s learning curves:

$ python plot_curves.py

which, internally, has been hard-coded to point to the local directory walkthroughs/demo3/gncn_t1_ffm/ contain-
ing the relevant measurements/numpy arrays. Doing so should result in a plot that looks similar to the one below:

As observed in the plot above, this NGC overfits the training sample perfectly (reaching a training error 0.0%) as
indicated by the fact that the blue validation V-Acc curve is a bit higher than the red Acc learning curve (which itself
converges to and remains at perfect training accuracy). Note that these reported accuracy measurements come from
the ancestral projection graph we used to initialize the settling process of the discriminative NGC system, meaning that
we can readily deploy the projection graph itself as a direct probabilistic model of p(y|x).

6.3 References

[1] Whittington, James CR, and Rafal Bogacz. “An approximation of the error backpropagation algorithm in a predic-
tive coding network with local hebbian synaptic plasticity.” Neural computation 29.5 (2017): 1229-1262.
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CHAPTER

SEVEN

WALKTHROUGH 4: SPARSE CODING

In this demonstration, we will learn how to create, simulate, and visualize the internally acquired filters/atoms of
variants of a sparse coding system based on the classical model proposed by (Olshausen & Field, 1996) [1]. After
going through this demonstration, you will:

1. Learn how to build a 2-layer NGC sparse coding model of natural image patterns, using the original dataset used
in [1].

2. Visualize the acquired filters of the learned dictionary models and examine the results of imposing a kurtotic
prior as well as a thresholding function over latent codes.

Note that the folders of interest to this demonstration are:

• walkthroughs/demo4/: this contains the necessary simulation scripts

• walkthroughs/data/: this contains the zipped copy of the natural image arrays

7.1 On Dictionary Learning

Dictionary learning poses a very interesting question for statistical learning: can we extract “feature detectors” from a
given database (or collection of patterns) such that only a few of these detectors play a role in reconstructing any given,
original pattern/data point? The aim of dictionary learning is to acquire or learn a matrix, also called the “dictionary”,
which is meant to contain “atoms” or basic elements inside this dictionary (such as simple fundamental features such
as the basic strokes/curves/edges that compose handwritten digits or characters). Several atoms (or rows of this matrix)
inside the dictionary can then be linearly combined to reconstruct a given input signal or pattern. A sparse dictionary
model is able to reconstruct input patterns with as few of these atoms as possible. Typical sparse dictionary or coding
models work with an over-complete spanning set, or, in other words, a latent dimensionality (which one could think of
as the number of neurons in a single latent state node of an NGC system) that is greater than the dimensionality of the
input itself.

From a neurobiological standpoint, sparse coding emulates a fundamental property of neural populations – the activities
among a neural population are sparse where, within a period of time, the number of total active neurons (those that are
firing) is smaller than the total number of neurons in the population itself. When sensory inputs are encoded within this
population, different subsets (which might overlap) of neurons activate to represent different inputs (one way to view
this is that they “fight” or compete for the right to activate in response to different stimuli). Classically, it was shown
in [1] that a sparse coding model trained on natural image patches learned within its dictionary non-orthogonal filters
that resembled receptive fields of simple-cells (found in the visual cortex).
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7.2 Constructing a Sparse Coding System

To build a sparse coding model, we can, as we have in the previous three walkthroughs, manually craft one using nodes
and cables. First, let us specify the underlying generative model we aim to emulate. In NGC shorthand, this means that
we seek to build:

Node Name Structure:
p(z1) ; z1 -(z1-mu0-)-> mu0 ;e0; z0
Note: Cauchy prior applied for p(z1)

Furthermore, we further specify underlying directed generative model (in accordance with the methodology in Demon-
stration #3) as follows:

Node Name Structure:
s1 -(s1-s0-)-> s0
Note: s1 ~ p(s1), where p(s1) is the prior over s1
Note: s1-s0 = z1-mu0

where we see that we aim to learn a two-layer generative system that specifically imposes a prior distribution p(z1)
over the latent feature detectors that we hope to extract in node z1. Note that this two-layer model (or single latent-
variable layer model) could either be the linear generative model from [1] or one similar to the model learned through
ISTA [2] if a (soft) thresholding function is used instead.

Constructing the above system for (Olshausen & Field, 1996) is done, using nodes and cables, as follows:

x_dim = # ... dimension of patch data ...
# ---- build a sparse coding linear generative model with a Cauchy prior ----
K = 300
beta = 0.05
# general model configurations
integrate_cfg = {"integrate_type" : "euler", "use_dfx" : True}
prior_cfg = {"prior_type" : "cauchy", "lambda" : 0.14} # configure latent prior
# cable configurations
init_kernels = {"A_init" : ("unif_scale",1.0)}
dcable_cfg = {"type": "dense", "init_kernels" : init_kernels, "seed" : seed}
pos_scable_cfg = {"type": "simple", "coeff": 1.0}
neg_scable_cfg = {"type": "simple", "coeff": -1.0}
constraint_cfg = {"clip_type":"forced_norm_clip","clip_mag":1.0,"clip_axis":1}

# set up system nodes
z1 = SNode(name="z1", dim=100, beta=beta, leak=leak, act_fx=act_fx,

integrate_kernel=integrate_cfg, prior_kernel=prior_cfg)
mu0 = SNode(name="mu0", dim=x_dim, act_fx=out_fx, zeta=0.0)
e0 = ENode(name="e0", dim=x_dim)
z0 = SNode(name="z0", dim=x_dim, beta=beta, integrate_kernel=integrate_cfg, leak=0.0)

# create the rest of the cable wiring scheme
z1_mu0 = z1.wire_to(mu0, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=dcable_cfg)
z1_mu0.set_constraint(constraint_cfg)
mu0.wire_to(e0, src_comp="phi(z)", dest_comp="pred_mu", cable_kernel=pos_scable_cfg)
z0.wire_to(e0, src_comp="phi(z)", dest_comp="pred_targ", cable_kernel=pos_scable_cfg)
e0.wire_to(z1, src_comp="phi(z)", dest_comp="dz_bu", mirror_path_kernel=(z1_mu0,"symm_
→˓tied"))
e0.wire_to(z0, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=neg_scable_cfg)

(continues on next page)
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z1_mu0.set_update_rule(preact=(z1,"phi(z)"), postact=(e0,"phi(z)"), param=["A"])
param_axis = 1

# Set up graph - execution cycle/order
model = NGCGraph(K=K, name="gncn_t1_sc", batch_size=batch_size)
model.set_cycle(nodes=[z1,z0])
model.set_cycle(nodes=[mu0])
model.set_cycle(nodes=[e0])
model.compile()

while building its ancestral sampling co-model is done with the following code block:

# build this NGC model's sampling graph
z1_dim = ngc_model.getNode("z1").dim
z0_dim = ngc_model.getNode("z0").dim
s1 = FNode(name="s1", dim=z1_dim, act_fx=act_fx)
s0 = FNode(name="s0", dim=z0_dim, act_fx=out_fx)
s1_s0 = s1.wire_to(s0, src_comp="phi(z)", dest_comp="dz", mirror_path_kernel=(z1_mu0,
→˓"tied"))
sampler = ProjectionGraph()
sampler.set_cycle(nodes=[s1,s0])
sampler.compile()

Notice that we have, in our NGCGraph, taken care to set the .param_axis variable to be equal to 1 – this will, when-
ever we call apply_constraints(), tell the NGC system to normalize the Euclidean norm of the columns of each
generative/forward matrix to be equal to .proj_weight_mag (which we set to the typical value of 1). This is a partic-
ularly important constraint to apply to sparse coding models as this prevents the trivial solution of simply growing out
the magnitude of the dictionary synapses to solve the underlying constrained optimization problem (and, in general,
constraining the rows or columns of NGC generative models helps to facilitate a more stable training process).

To build the version of our model using a thresholding function (instead of using a factorial prior over the latents), we
can write the following:

x_dim = # ... dimension of image data ...
K = 300
beta = 0.05
# general model configurations
integrate_cfg = {"integrate_type" : "euler", "use_dfx" : True}
# configure latent threshold function
thr_cfg = {"threshold_type" : "soft_threshold", "thr_lambda" : 5e-3}
# cable configurations
dcable_cfg = {"type": "dense", "init" : ("unif_scale",1.0), "seed" : seed}
pos_scable_cfg = {"type": "simple", "coeff": 1.0}
neg_scable_cfg = {"type": "simple", "coeff": -1.0}
constraint_cfg = {"clip_type":"forced_norm_clip","clip_mag":1.0,"clip_axis":1}

# set up system nodes
z1 = SNode(name="z1", dim=100, beta=beta, leak=leak, act_fx=act_fx,

integrate_kernel=integrate_cfg, threshold_kernel=thr_cfg)
mu0 = SNode(name="mu0", dim=x_dim, act_fx=out_fx, zeta=0.0)
e0 = ENode(name="e0", dim=x_dim)
z0 = SNode(name="z0", dim=x_dim, beta=beta, integrate_kernel=integrate_cfg, leak=0.0)

(continues on next page)
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# create the rest of the cable wiring scheme
z1_mu0 = z1.wire_to(mu0, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=dcable_cfg)
z1_mu0.set_constraint(constraint_cfg)
mu0.wire_to(e0, src_comp="phi(z)", dest_comp="pred_mu", cable_kernel=pos_scable_cfg)
z0.wire_to(e0, src_comp="phi(z)", dest_comp="pred_targ", cable_kernel=pos_scable_cfg)
e0.wire_to(z1, src_comp="phi(z)", dest_comp="dz_bu", mirror_path_kernel=(z1_mu0,"symm_
→˓tied"))
e0.wire_to(z0, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=neg_scable_cfg)
z1_mu0.set_update_rule(preact=(z1,"phi(z)"), postact=(e0,"phi(z)"), param=["A"])

# Set up graph - execution cycle/order
model = NGCGraph(K=K, name="gncn_t1_sc", batch_size=batch_size)
model.set_cycle(nodes=[z1,z0])
model.set_cycle(nodes=[mu0])
model.set_cycle(nodes=[e0])
model.compile()

Note that the ancestral projection this model using thresholding would be the same as the one we built earlier. Notably,
the above models can also be imported from the Model Museum, specifically using GNCN-t1/SC, which internally
implements the NGCGraph(s) depicted above.

Finally, for both the first model (which emulates [1]) and the second model (which emulates [2]), we should define their
total discrepancy (ToD) measurement functions so we can track their performance throughout simulation:

def calc_ToD(agent, lmda):
"""Measures the total discrepancy (ToD), or negative energy, of an NGC system"""
z1 = agent.ngc_model.extract(node_name="z1", node_var_name="z")
e0 = agent.ngc_model.extract(node_name="e0", node_var_name="phi(z)")
z1_sparsity = tf.reduce_sum(tf.math.abs(z1)) * lmda # sparsity penalty term
L0 = tf.reduce_sum(tf.math.square(e0)) # reconstruction term
ToD = -(L0 + z1_sparsity)
return float(ToD)

In fact, the above total discrepancy, in the case of a sparse coding model, measures the negative of its underlying energy
function, which is simply the sum of its reconstruction error (or the sum of the square of the NGC system’s sensory
error neurons e0) and the sparsity of its single latent state layer z1.

7.3 Learning Latent Feature Detectors

We will now simulate the learning of the feature detectors using the two sparse coding models that we have built above.
The code provided in sim_train.py in /walkthroughs/demo4/ will execute a simulation of the above two models
on the natural images found in walkthroughs/data/natural_scenes.zip), which is a dataset composed of several
images of the American Northwest.

First, navigate to the walkthroughs/ directory to access the example/demonstration code and further enter the
walkthroughs/data/ sub-folder. Unzip the file natural_scenes.zip to create one more sub-folder that contains
two numpy arrays, the first labeled natural_scenes/raw_dataX.npy and another labeled as natural_scenes/
dataX.npy. The first one contains the original, 512 x 512 raw pixel image arrays (flattened) while the second contains
the pre-processed, whitened/normalized (and flattened) image data arrays (these are the pre-processed image patterns
used in [1]). You will, in this demonstration, only be working with natural_scenes/dataX.npy. Two (raw) images
sampled from the original dataset (raw_dataX.npy) are shown below:

66 Chapter 7. Walkthrough 4: Sparse Coding



ngc-learn, Release 0.4.0

With the data unpacked and ready, we can now turn our attention to simulating the training process. One way to write
the training loop for our sparse coding models would be the following:

args = # load in Config object with user-defined arguments
args.setArg("batch_size",num_patches)
agent = GNCN_t1_SC(args) # set up NGC model
opt = tf.keras.optimizers.SGD(0.01) # set up optimization process

############################################################################
# create a training loop
ToD, Lx = eval_model(agent, train_set, calc_ToD, verbose=True)
vToD, vLx = eval_model(agent, dev_set, calc_ToD, verbose=True)
print("{} | ToD = {} Lx = {} ; vToD = {} vLx = {}".format(-1, ToD, Lx, vToD, vLx))

########################################################################
mark = 0.0
for i in range(num_iter): # for each training iteration/epoch

ToD = Lx = 0.0
n_s = 0
# run single epoch/pass/iteration through dataset
####################################################################
for batch in train_set:

x_name, x = batch[0]
# generate patches on-the-fly for sample x
x_p = generate_patch_set(x, patch_size, num_patches)
x = x_p
n_s += x.shape[0] # track num samples seen so far
mark += 1

x_hat = agent.settle(x) # conduct iterative inference
ToD_t = calc_ToD(agent, lmda) # calc ToD

(continues on next page)
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ToD = ToD_t + ToD
Lx = tf.reduce_sum( metric.mse(x_hat, x) ) + Lx

# update synaptic parameters given current model internal state
delta = agent.calc_updates(avg_update=False)
opt.apply_gradients(zip(delta, agent.ngc_model.theta))
agent.ngc_model.apply_constraints()
agent.clear()

print("\r train.ToD {} Lx {} with {} samples seen (t = {})".format(
(ToD/(n_s * 1.0)), (Lx/(n_s * 1.0)), n_s, (inf_time/mark)),
end=""
)

####################################################################
print()
ToD = ToD / (n_s * 1.0)
Lx = Lx / (n_s * 1.0)
# evaluate generalization ability on dev set
vToD, vLx = eval_model(agent, dev_set, calc_ToD)
print("-------------------------------------------------")
print("{} | ToD = {} Lx = {} ; vToD = {} vLx = {}".format(

i, ToD, Lx, vToD, vLx)
)

notice that the training code above, which has also been integrated into the provided sim_train.py demo file, looks
very similar to how we trained our generative models in Demonstration # 1. In contrast to our earlier training loops,
however, we have now written and used patch creation function generate_patch_set() to sample image patches of
16 x 16 pixels on-the-fly each time an image is sampled from the DataLoader. Note that we have hard-coded this
patch-shape, as well as the training batch_size = 1 (since mini-batches of data are supposed to contain multiple
patches instead of images), into sim_train.py in order to match the setting of [1]. As a result, the sparse coding
training process consists of the following steps:

1) sample a random image from the image design matrix inside of the DataLoader,

2) generate a number of patches equal to num_patches = 250 (which we have also hard-coded into sim_train.
py), and

3) feed this mini-batch of image patches to the NGC system to facilitate a learning step.

To train the first sparse coding model with the Cauchy factorial prior over z1, run the following the script:

$ python sim_train.py --config=sc_cauchy/fit.cfg --gpu_id=0 --n_trials=1

which will train a GNCN-t1/SC (with a Cauchy prior) on 16 x 16 pixel patches from the natural image dataset in [1].
After the simulation terminates, i.e., once 400 iterations/passes through the data have been made, you will notice in
the sc_cauchy/ sub-directory you have several useful files. Among these files, what we want is the serialized, trained
sparse coding model model0.ngc. To extract and visualize the learned filters of this NGC model, you then need to run
the final script, viz_filters.py, as follows:

$ python viz_filters.py --model_fname=sc_cauchy/model0.ngc --output_dir=sc_cauchy/

which will iterate through your model’s dictionary atoms (stored within its single synaptic weight matrix) and ultimately
produce a visual plot of the filters which should look like the one below:
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Now re-run the simulation but use the sc_ista/fit.cfg configuration instead, like so:

$ python sim_train.py --config=sc_ista/fit.cfg --gpu_id=0 --n_trials=1

and this will train your sparse coding using a latent soft-thresholding function (emulating ISTA). After this simulated
training process ends, again, like before, run:

$ python viz_filters.py --model_fname=sc_ista/model0.ngc --output_dir=sc_ista/

and you should obtain a filter plot like the one below:
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The filter plots, notably, visually indicate that the dictionary atoms in both sparse coding systems learned to function
as edge detectors, each tuned to a particular position, orientation, and frequency. These learned feature detectors, as
discussed in [1], appear to behave similar to the primary visual area (V1) neurons of the cerebral cortex in the brain.
Although, in the end, the edge detectors learned by both our models qualitatively appear to be similar, we should
note that the latent codes (when inferring them given sensory input) for the model that used the thresholding function
are ultimately sparser. Furthermore, the filters for the model with thresholding appear to smoother and with fewer
occurrences of less-than-useful slots than the Cauchy model (or filters that did not appear to extract any particularly
interpretable features).

This difference in sparsity can be verified by examining the difference/gap between the absolute value of the total dis-
crepancy ToD and the reconstruction loss Lx (which would tell us the degree of sparsity in each model since, according
to our energy function formulation earlier, |ToD| = Lx + lambda * sparsity_penalty). In the experiment we
ran for this demonstration, we saw that for the Cauchy prior model, at the start of training, the |ToD| was 14.18 and
Lx was 12.42 (in nats) and, at the end of training, the |ToD| was 5.24 and Lx was 2.13 with the ending gap being
|ToD| - Lx = 3.11 nats. With respect to the latent thresholding model, we observed that, at the start, |ToD| was
-12.82 and Lx was 12.77 and, at the end, the |ToD| was 2.59 and Lx was 2.50 with the ending gap being |ToD|
- Lx = 0.09 nats. The final gap of the thresholding model is substantially lower than the one of the Cauchy prior
model, indicating that the latent states of the thresholding model are, indeed, the sparsest.
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CHAPTER

EIGHT

WALKTHROUGH 5: AMORTIZED INFERENCE

In this demonstration, we will design a simple way to conduct amortized inference to speed up the settling process of
an NGC model, cutting down the number of steps needed overall. We will build a custom model, which we will call
the hierarchical ISTA model or “GNCN-t1-ISTA”, and train it on the Olivetti database of face images [4]. After going
through this demonstration, you will:

1. Learn how to construct a learnable inference projection graph to initialize the states of an NGC system, facilitating
amortized inference.

2. Design a deep sparse coding model for modeling faces using the original dataset used in [4] and visualize the
acquired filters of the learned representation system.

Note that the folders of interest to this demonstration are:

• walkthroughs/demo5/: this contains the necessary simulation scripts

• walkthroughs/data/: this contains the zipped copy of the face image arrays

8.1 Speeding Up the Settling Process with Amortized Inference

Although fitting an NGC model (a GNCN) to a data sample is a rather straightforward process, as we saw in the Demo
1 the underlying dynamics of the neural system require performing K steps of an iterative settling (inference) process to
find suitable estimates of the latent neural state values. For the problem we have investigated so far, this only required
around 50 steps which is not too expensive to simulate but for higher-dimensional, more complex problems, such as
modeling temporal data generating processes or learning from sparse signals (as in the case of reinforcement learning),
this settling process could potentially start maxing out modest computational budgets.

There are, at least, two key paths to reduce the underlying computational expense of the iterative settling process
required by a predictive processing NGC model:

1) exploit the layer-wise parallelism inherent to the NGC state and synaptic update calculations – since NGC models
are not update-locked (the state predictions and weight updates do not depend on one another) as deep neural
networks are, one could design a distributed algorithm where a group/system of GPUs/CPUs synchronously (or
asynchronously) compute(s) layer-wise predictions and weight updates, and

2) reduce the number of settling steps by constructing a computation process that infers the values of the latent states
of a GNCN given a sensory sample(s), ultimately serving as an intelligent initialization of the state values instead
of starting from zero vectors. For this second way, approaches have ranged from ancestral sampling/projection,
as in deep Boltzmann machines [1] and as in for NGC systems formulated for active inference [2], to learning
(jointly with the generative model) a complementary (neural) model, sometimes called a “recognition model”, in
a process known as amortized inference, e.g., in sparse coding the algorithm developed to do this was called pre-
dictive sparse decomposition [3]. Amortize means, in essence, to gradually reduce the initial cost of something
(whether it be an asset or activity) over a period.
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While there are many ways in which one could implement amortized inference, we will focus on using ngc-learn’s
ProjectionGraph to construct a simple, learnable recognition model.

8.2 The Model: Hierarchical ISTA

We will start by first constructing the model we would like to learn. Specifically, for this demonstration, we want to
build a model for synthesizing human faces, specifically those contained in the Olivetti faces database.

For this part of the demonstration, you will need to unzip the data contained in walkthroughs/data/faces.zip
(in the walkthroughs/data/ sub-folder) to create the necessary sub-folder which contains a single numpy array,
faces/dataX.npy. This data file contains the flattened vectors of 40 images of size 256 x 256 pixels (pixel values
have been normalized to the range of [0,1]), each depicting a human face. Two images sampled from the dataset
(dataX.npy) are shown below:

We will now construct the specialized model which we will call, in the context of this demonstration, the “GNCN-t1-
ISTA” (or “deep ISTA”). Specifically, we will extend our sparse coding ISTA model from Demonstration #4 to utilize
an extra layer of latent variables “above”. Notably, we will use the soft-thresholding function, which can be viewed as
inducing a form a local lateral competition in the latent activities to yield sparse representations, and apply to the two
latent state nodes of our system.

We start by first specifying the NGC system in design shorthand:

Node Name Structure:
z2 -(z2-mu1)-> mu1 ;e1; z1 -(z1-mu0-)-> mu0 ;e0; z0

where we see that our three-layer system consists of seven nodes in total, i.e., the three latent state nodes z2, z1 and
z0, the two mean prediction nodes mu1 and mu0, and the two error neuron nodes e1 and e0. Note that, when we build
our recognition model later, our goal will be to infer good guess of the initial values of the z compartment of the nodes
z1 and z2 (with z0 being clamped to the input image patch x).

Inside of the provided gncn_t1_ista.py, we see how the core of the system was put together with nodes and cables
to create the hierarchical generative model:

x_dim = # ... dimension of patch data ...
# ---- build a hierarchical ISTA model ----
K = 10
beta = 0.05
# general model configurations
integrate_cfg = {"integrate_type" : "euler", "use_dfx" : True}
thr_cfg = {"threshold_type" : "soft_threshold", "thr_lambda" : 5e-3}

(continues on next page)
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(continued from previous page)

# cable configurations
init_kernels = {"A_init" : ("unif_scale",1.0)}
dcable_cfg = {"type": "dense", "init_kernels" : init_kernels, "seed" : seed}
pos_scable_cfg = {"type": "simple", "coeff": 1.0}
neg_scable_cfg = {"type": "simple", "coeff": -1.0}
constraint_cfg = {"clip_type":"forced_norm_clip","clip_mag":1.0,"clip_axis":1}

# set up system nodes
z2 = SNode(name="z2", dim=100, beta=beta, leak=0, act_fx="identity",

integrate_kernel=integrate_cfg, threshold_kernel=thr_cfg)
mu1 = SNode(name="mu1", dim=100, act_fx="identity", zeta=0.0)
e1 = ENode(name="e1", dim=100)
z1 = SNode(name="z1", dim=100, beta=beta, leak=0, act_fx="identity",

integrate_kernel=integrate_cfg, threshold_kernel=thr_cfg)
mu0 = SNode(name="mu0", dim=x_dim, act_fx="identity", zeta=0.0)
e0 = ENode(name="e0", dim=x_dim)
z0 = SNode(name="z0", dim=x_dim, beta=beta, integrate_kernel=integrate_cfg, leak=0.0)

# set up latent layer 2 to layer 1
z2_mu1 = z2.wire_to(mu1, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=dcable_cfg)
z2_mu1.set_constraint(constraint_cfg)
mu1.wire_to(e1, src_comp="phi(z)", dest_comp="pred_mu", cable_kernel=pos_scable_cfg)
z1.wire_to(e1, src_comp="z", dest_comp="pred_targ", cable_kernel=pos_scable_cfg)
e1.wire_to(z2, src_comp="phi(z)", dest_comp="dz_bu", mirror_path_kernel=(z2_mu1,"A^T"))
e1.wire_to(z1, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=neg_scable_cfg)

# set up latent layer 1 to layer 0
z1_mu0 = z1.wire_to(mu0, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=dcable_cfg)
z1_mu0.set_constraint(constraint_cfg)
mu0.wire_to(e0, src_comp="phi(z)", dest_comp="pred_mu", cable_kernel=pos_scable_cfg)
z0.wire_to(e0, src_comp="phi(z)", dest_comp="pred_targ", cable_kernel=pos_scable_cfg)
e0.wire_to(z1, src_comp="phi(z)", dest_comp="dz_bu", mirror_path_kernel=(z1_mu0,"A^T"))
e0.wire_to(z0, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=neg_scable_cfg)

# set up update rules and make relevant edges aware of these
z2_mu1.set_update_rule(preact=(z2,"phi(z)"), postact=(e1,"phi(z)"), param=["A"])
z1_mu0.set_update_rule(preact=(z1,"phi(z)"), postact=(e0,"phi(z)"), param=["A"])

# Set up graph - execution cycle/order
print(" > Constructing NGC graph")
model = NGCGraph(K=K, name="gncn_t1_ista")
model.set_cycle(nodes=[z2,z1,z0])
model.set_cycle(nodes=[mu1,mu0])
model.set_cycle(nodes=[e1,e0])
model.apply_constraints()
model.compile(batch_size=batch_size)

Notice that we have set the number of simulated settling steps K to be quite small compared to the sparse coding models
in Demonstration #4, i.e., we have drastically cut down the number of inference steps we required from K = 300 to K =
10, a highly desirable 96.6% decrease in computational cost (with respect to number of settling steps). The key is that
the recognition model will learn to approximate the end-result of the settling process, and, over the course of training
to an image database, progressively improve its estimates which will in turn better initialize the NGCGraph object’s
iterative inference. Since the recognition model will continually chase the result of the ever-improving settling process,
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we short-circuit the need for longer simulated settling processes with the trade-off that our iterative inference will be a
bit less accurate in general (if the recognition model, which starts off randomly initialized, provides bad starting points
in the latent search space, then the settling process will have to work harder to correct for the recognition model’s
deficiencies).

8.3 Constructing the Recognition Model

Building a recognition model for an NGC system is straightforward if we simply treat it as an ancestral projection graph
with the key exception that it is “learnable”. Specifically, we will randomly initialize an ancestral projection graph that
will compute initial “guesses” of the activity values of z1 and z2 in our deep ISTA model. It helps to, as we did with
the generative model, specify the form of the recognition model in shorthand as follows:

Node Name Structure:
s0 -s0-s1-> s1 ; s1 -s1-s2-> s2
Note: s1; e1_i ; z1, s2; e2_i ; z2
Note: s0 = x // (we clamp s0 to data)

where we emphasize the difference between the recognition model and the generative model by labeling the recognition
model’s first and second latent layers as s1 and s2, respectively. Our recognition model’s goal, as explained before,
will be to make its predicted value for s1 match z1 as well as make its predicted value s2 match z2, where z1 and z2
are the results of the NGCGraph model’s setting process that we designed above. This matching task is emphasized by
our shorthand’s second line, where we see that the value of s1 will be compared to z1 via the error node e1_i and s2
will be compared to z2 via e2_i.

Unlike the previous projection graphs we have built in earlier walkthroughs, our recognition model runs in the “op-
posite” direction of our generative model – it takes in data and predicts initial values for the latent states while the
generative model predicts a value for the data given the latent states. Together, the recognition and the generative
model will learn to cooperate in order to produce reasonable values for the latent states z1 and z2 that could plausibly
produce a given input image patch z0 = x.

To create the recognition model that will allow us to conduct amortized inference, we write the following:

# set up this NGC model's recognition model
inf_constraint_cfg = {"clip_type":"norm_clip","clip_mag":1.0,"clip_axis":0}
z2_dim = ngc_model.getNode("z2").dim
z1_dim = ngc_model.getNode("z1").dim
z0_dim = ngc_model.getNode("z0").dim

s0 = FNode(name="s0", dim=z0_dim, act_fx="identity")
s1 = FNode(name="s1", dim=z1_dim, act_fx="identity")
st1 = FNode(name="st1", dim=z1_dim, act_fx="identity")
s2 = FNode(name="s2", dim=z2_dim, act_fx="identity")
st2 = FNode(name="st2", dim=z2_dim, act_fx="identity")
s0_s1 = s0.wire_to(s1, src_comp="phi(z)", dest_comp="dz", cable_kernel=dcable_cfg)
s0_s1.set_constraint(inf_constraint_cfg)
s1_s2 = s1.wire_to(s2, src_comp="phi(z)", dest_comp="dz", cable_kernel=dcable_cfg)
s1_s2.set_constraint(inf_constraint_cfg)

# build the error neurons that examine how far off the inference model was
# from the final NGC system's latent activities
e1_inf = ENode(name="e1_inf", dim=z_dim)
s1.wire_to(e1_inf, src_comp="phi(z)", dest_comp="pred_mu", cable_kernel=pos_scable_cfg)
st1.wire_to(e1_inf, src_comp="phi(z)", dest_comp="pred_targ", cable_kernel=pos_scable_
→˓cfg) (continues on next page)
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(continued from previous page)

e2_inf = ENode(name="e2_inf", dim=z_dim)
s2.wire_to(e2_inf, src_comp="phi(z)", dest_comp="pred_mu", cable_kernel=pos_scable_cfg)
st2.wire_to(e2_inf, src_comp="phi(z)", dest_comp="pred_targ", cable_kernel=pos_scable_
→˓cfg)

# set up update rules and make relevant edges aware of these
s0_s1.set_update_rule(preact=(s0,"phi(z)"), postact=(e1_inf,"phi(z)"), param=["A"])
s1_s2.set_update_rule(preact=(s1,"phi(z)"), postact=(e2_inf,"phi(z)"), param=["A"])

sampler = ProjectionGraph()
sampler.set_cycle(nodes=[s0,s1,s2])
sampler.set_cycle(nodes=[st1,st2])
sampler.set_cycle(nodes=[e1_inf,e2_inf])
sampler.compile()

Now all that remains is to combine the recognition model with the generative model to create the full system. Specifi-
cally, to tie the two components together, we would write the following code:

x = # ... sampled image patch (or batch of patches) ...
# run recognition model
readouts = sampler.project(

clamped_vars=[("s0","z",x)],
readout_vars=[("s1","z"),("s2","z")]

)
s1 = readouts[0][2]
s2 = readouts[1][2]
# now run the settling process
readouts, delta = model.settle(

clamped_vars=[("z0","z", x)],
init_vars=[("z1","z",s1),("z2","z",s2)],
readout_vars=[("mu0","phi(z)"),("z1","z"),

("z2","z")],
calc_delta=True

)
x_hat = readouts[0][2]

# now compute the updates to the encoder given the current state of system
z1 = readouts[1][2]
z2 = readouts[2][2]
#z3 = readouts[3][2]
sampler.project(

clamped_vars=[("s0","z",tf.cast(x,dtype=tf.float32)),
("s1","z",s1),("s2","z",s2),
("st1","z",z1),("st2","z",z2)]

)
r_delta = sampler.calc_updates()

# update NGC system synaptic parameters
opt.apply_gradients(zip(delta, model.theta))
# update recognition model synaptic parameters
r_opt.apply_gradients(zip(delta, sampler.theta))

The above code snippet would generally occur within your training loop (which would be the same as the one in Demon-
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stration #4) and can be founded integrated into the two key files provided for this demonstration, i.e., sim_train.py
and gncn_t1_ista.py. Note that the gncn_t1_ista.py further illustrates how you can write a model that would fit
within the general schema of ngc-learn’s Model Museum, which requires that NGC systems provide an API to their
key task-specific functions. gncn_t1_ista.py specifically implements all of the code we developed above for the
deep ISTA model and its corresponding recognition model while sim_train.py is used to fit the model to the Olivetti
dataset you unzipped into the walkthroughs/data/ directory.

To train our deep ISTA model, you should execute the following:

python sim_train.py --config=sc_face/fit.cfg --gpu_id=0

which will simulate the training of a deep ISTA model on face image patches for about 20 iterations. After this simulated
process ends, you can then run the visualization script we have created for you:

$ python viz_filters.py --model_fname=sc_face/model0.ngc --output_dir=sc_face/ --viz_
→˓encoder=True

which will produce and save two visualizations in your sc_face/ sub-directory, one plot that depicts the learned
bottom layer filters for the recognition model and one for the deep ISTA model. You should see filter plots similar to
those presented below:

As we see, our NGC system has desirably learned low-level feature detectors corresponding to “pieces” of human faces,
such as lips, noses, eyes, and other facial components. This was all learned only a few steps of simulated settling (K =
10) utilizing our learned recognition model. Notice that the low-level filters of the recognition model (the plot to the
left) look similar to those acquired by the generative model but are “simpler” or less distinguished/sharp. This makes
sense given that we designed our recognition model to “serve” the generative model by providing an initialization of
its latent states (or “starting points” for the search for good latent states that generate the input patches). It appears
that the recognition model’s facial feature detectors are broad or less-detailed versions of those contained within our
hierarchical ISTA model.
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CHAPTER

NINE

WALKTHROUGH 6: HARMONIUMS AND CONTRASTIVE
DIVERGENCE

Although ngc-learn was originally designed with a focus on predictive processing neural systems, it is possible to
simulate other kinds of neural systems with different dynamics and forms of learning. Notably, a class of learning and
inference systems that adapt through a process known as contrastive Hebbian learning (CHL) can be constructed and
simulated with ngc-learn.

In this walkthrough, we will design a simple (single-wing) Harmonium, also known as the restricted Boltzmann ma-
chine (RBM). We will specifically focus on learning its synaptic connections with an algorithmic recipe known as
Contrastive Divergence (CD). After going through this walkthrough, you will:

1. Learn how to construct an NGCGraph that emulates the structure of an RBM and adapt the NGC settling process
to calculate approximate synaptic weight gradients in accordance to Contrastive Divergence.

2. Simulate fantasized image samples using the block Gibbs sampler implicitly defined by the negative phase graph.

Note that the folders of interest to this walkthrough are:

• walkthroughs/demo6/: this contains the necessary simulation scripts

• walkthroughs/data/: this contains the zipped copy of the digit image arrays

9.1 On Single-Wing Harmoniums

A Harmonium is a generative model implemented as a stochastic, two-layer neural system that attempts to learn a
probability distribution over sensory input x, i.e., the goal of a Harmonium is to learn 𝑝(x), much like the models we
were learning in Walkthrough #1. Fundamentally, the approach to estimating 𝑝(x) that is taken by a Harmonium is
through optimizing an energy function 𝐸(x) (a concept motivated by statistical mechanics), where the system searches
for an internal configuration, i.e., the values of its synapses, has low energy (values) for patterns that lie come from the
true data distribution 𝑝(x) and high energy (values) for patterns that do not (or those that do not come from the training
dataset).

The most common, standard Harmonium is one where input nodes (one per dimension of the data observation space)
are modeled as binary/Boolean sensors, or “visible units” z0 (which are clamped to actual data patterns), connected to
a layer of (stochastic) binary latent feature detectors, or “hidden units” z1. Notably, the connections between the latent
and visible units are symmetric. As a result of a key restriction imposed on the Harmonium’s network structure, i.e., no
lateral connections between the neurons in z0 as well as those in z1, computing the latent and visible states is simple:

𝑝(z1|z0) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(W · z0 + c), z1 ∼ 𝑝(z1|z0)

𝑝(z0|z1) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(W𝑇 · z1 + b), z0 ∼ 𝑝(z0|z1)

where b is the visible bias vector, c is the latent bias vector, and W is the synaptic weight matrix that connects z0 to z1

(and its transpose W𝑇 is used to make predictions of the input itself). Note that · means matrix/vector multiplication
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and ∼ denotes that we would sample from a probability (vector) and, in the above Harmonium’s case, samples will be
drawn treating conditionals such as 𝑝(z1|z0) as multivariate Bernoulli distributions. z0 would typically be clamped/set
to the actual sensory input data x.

The energy function of the Harmonium’s joint configuration (z0, z1) (similar to that of a Hopfield network) is specified
as follows:

𝐸(z0, z1) = −
∑︁
𝑖

b𝑖z
0
𝑖 −

∑︁
𝑗

c𝑗z
1
𝑗 −

∑︁
𝑖

∑︁
𝑗

z0𝑖W𝑖𝑗z
1
𝑗

Notice in the equation above, we sum over indices, e.g., z0𝑖 retrieves the 𝑖th scalar element of (vector) z0 while W𝑖𝑗

retrieves the scalar element at position (𝑖, 𝑗) within matrix W. With this energy function, one can write out the
probability that a Harmonium assigns to a data point:

𝑝(z0 = x) =
1

𝑍
exp(−𝐸(z0, z1))

where 𝑍 is the normalizing constant (or, in statistics mechanics, the partition function) needed to obtain proper prob-
ability values (and is, in fact, intractable to compute for any reasonably-sized Harmonium – fortunately, we will not
need to calculate it in order to learn a Harmonium). When one works through the derivation of the gradient of the
log probability log 𝑝(x) with respect to the synapses such as W, they get a (contrastive) Hebbian-like update rule as
follows:

∆W =< z0𝑖 z
1
𝑗 >𝑑𝑎𝑡𝑎 − < z0𝑖 z

1
𝑗 >𝑚𝑜𝑑𝑒𝑙

where the angle brackets <> tell us that we need to take the expectation of the values within the brackets under a
certain distribution (such as the data distribution denoted by the subscript 𝑑𝑎𝑡𝑎).

Technically, to compute the update above, obtaining the first term < z0𝑖 z
1
𝑗 >𝑑𝑎𝑡𝑎 is easy since we take the product of

a data point and its corresponding hidden state under the Harmonium but obtaining < z0𝑖 z
1
𝑗 >𝑚𝑜𝑑𝑒𝑙 is very costly, as

we would need to initialize the value of z0 to a random initial sate and then run a Gibbs sampler for many iterations to
accurately approximate the second term. Fortunately, it was shown in work such as [3], that learning a Harmonium is
still possible by replacing the term < z0𝑖 z

1
𝑗 >𝑚𝑜𝑑𝑒𝑙 with < z0𝑖 z

1
𝑗 >𝑟𝑒𝑐𝑜𝑛, which is simply computed by using the first

term’s latent state z1 to reconstruct the input and then using this reconstruction one more to obtain its corresponding
binary latent state. This is known as “Contrastive Divergence”, and, although this approximation has been shown to
not actual follow the gradient of any known objective function, it works well in practice when learning a generative
model based on a Harmonium. Finally, the vectorized form of the Contrastive Divergence update is:

∆W =
[︁
(z0𝑝𝑜𝑠)

𝑇 · z1𝑝𝑜𝑠
]︁
−

[︁
(z0𝑛𝑒𝑔)𝑇 · z1𝑛𝑒𝑔

]︁
where the first term (in brackets) is labeled as the “positive phase” (or the positive, data-dependent statistics – where
z0𝑝𝑜𝑠 denotes the positive phase sample of z0) while the second term is labeled as the “negative phase” (or the negative,
data-independent statistics – where z0𝑛𝑒𝑔 denotes the negative phase sample of z0). Note that simpler rules of a similar
form can be worked out for the latent/visible bias vectors as well.

In ngc-learn, to simulate the above Harmonium generative model and its Contrastive Divergence update, we will model
the positive and negative phases as simulated NGCGraphs, each responsible for producing the relevant statistics we need
to adjust synapses. In addition, we will find that we can further re-purpose the created graphs to construct a block Gibbs
sampler needed to create “fantasized” data patterns from a trained Harmonium.
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9.2 Restricted Boltzmann Machines: Positive & Negative Graphs

We begin by first specifying the structure of the Harmonium system we would like to simulate. In NGC shorthand, the
above positive and negative phase graphs would simply be (under one complete generative model):

z0 -(z0-z1)-> z1
z1 -(z1-z0) -> z0
Note: z1-z0 = (z0-z1)^T (transpose-tied synapses)

To construct the desired Harmonium model, particularly the structure needed to simulate Contrastive Divergence, we
will need to break up the model into its key “phases”, i.e., a positive phase and a negative phase. We will model
each phase as its own simulated NGC graph, allowing us to craft a general approach that permits a K-step Contrastive
Divergence learning process. In particular, we will use the negative graph to emulate the crucial MCMC sampling step.

Building the positive phase of our Harmonium is simple and straightforward and could be written as follows:

integrate_cfg = {"integrate_type" : "euler", "use_dfx" : False}
init_kernels = {"A_init" : ("gaussian",wght_sd), "b_init" : ("zeros")}
dcable_cfg = {"type": "dense", "init_kernels" : init_kernels, "seed" : seed}
pos_scable_cfg = {"type": "simple", "coeff": 1.0}

## set up positive phase nodes
z1 = SNode(name="z1", dim=z_dim, beta=1, act_fx=act_fx, zeta=0.0,

integrate_kernel=integrate_cfg, samp_fx="bernoulli")
z0 = SNode(name="z0", dim=x_dim, beta=1, act_fx="identity", zeta=0.0,

integrate_kernel=integrate_cfg)
z0_z1 = z0.wire_to(z1, src_comp="phi(z)", dest_comp="dz_bu", cable_kernel=dcable_cfg)
z1_z0 = z1.wire_to(z0, src_comp="phi(z)", dest_comp="dz_bu", mirror_path_kernel=(z0_z1,
→˓"A^T"),

cable_kernel=dcable_cfg)
z0_z1.set_decay(decay_kernel=("l1",0.00005))

## set up positive phase update
z0_z1.set_update_rule(preact=(z0,"phi(z)"), postact=(z1,"phi(z)"), param=["A","b"])
z1_z0.set_update_rule(postact=(z0,"phi(z)"), param=["b"])

# build positive graph
print(" > Constructing Positive Phase Graph")
pos_phase = NGCGraph(K=1, name="rbm_pos")
pos_phase.set_cycle(nodes=[z0, z1]) # z0 -> z1
pos_phase.apply_constraints()
pos_phase.set_learning_order([z1_z0, z0_z1])
pos_phase.compile(batch_size=batch_size)

which amounts to simply simulating the projection of z0 to latent state z1. The key to ensuring we simulate this simple
function properly is to effectively “turn off” key parts of the neural state dynamics. Specifically, we see in the above
code-snippet we set the state update beta = 1 – this means that the full value of the deposits in dz_bu and dz_bu
will be added to the current value of the compartment z within z1 – and zeta = 0 – which means that the amount
of recurrent carryover is completely zeroed out (yielding a stateless node). Notice we have created a “dummy” or
ghost connection via the cable z1_z0 even though our positive phase graph will NOT actually execute the transform.
However, this ghost connection is needed so that way our positive phase graph contains a visible unit bias vector (which
will receive a full Hebbian update equal to the clamped visible value in the compartment phi(z) of z0).

When we trigger the .settle() routine for the above model given some observed data (e.g., an image or image patch),
we will obtain our single-step positive phase (sufficient) statistics which include the clamped observed value of z0 =
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x as well as its corresponding latent activity z1. This gives us half of what we need to learn a Harmonium.

To gather the rest of the statistics that we require, we need to build the negative phase of our model (to emulate its
ability to “dream” up or confabulate samples from its internal model of the world). While constructing the negative
phase is not that much more difficult than crafting the positive phase, it does take a bit of care to emulate the underlying
“cycle” that occurs in a Harmonium when it synthesizes data when using ngc-learn’s stateful dynamics. In short, we
need three nodes to explicitly simulate the negative phase – a z1n_i intermediate variable that we can clamp on the
positive phase value of the latent state z1, a generation output node z0n (where n labels this node as a “negative phase
statistic”), and finally a generated latent state z1n that corresponds to the output node. The simulated cycle z1n_i =>
z0n => z1n can then be written as:

# set up negative phase nodes
z1n_i = SNode(name="z1n_i", dim=z_dim, beta=1, act_fx=act_fx, zeta=0.0,

integrate_kernel=integrate_cfg, samp_fx="bernoulli")
z0n = SNode(name="z0n", dim=x_dim, beta=1, act_fx=out_fx, zeta=0.0,

integrate_kernel=integrate_cfg, samp_fx="bernoulli")
z1n = SNode(name="z1n", dim=z_dim, beta=1, act_fx=act_fx, zeta=0.0,

integrate_kernel=integrate_cfg, samp_fx="bernoulli")
n1_n0 = z1n_i.wire_to(z0n, src_comp="S(z)", dest_comp="dz_td", mirror_path_kernel=(z0_z1,
→˓"A^T"),

cable_kernel=dcable_cfg) # reuse A but create new b
n0_n1 = z0n.wire_to(z1n, src_comp="phi(z)", dest_comp="dz_bu", mirror_path_kernel=(z0_z1,
→˓"A+b")) # reuse A & b
n1_n1 = z1n.wire_to(z1n_i, src_comp="z", dest_comp="dz_bu", cable_kernel=pos_scable_cfg)

# set up negative phaszupdate
n0_n1.set_update_rule(preact=(z0n,"phi(z)"), postact=(z1n,"phi(z)"), param=["A","b"])
n1_n0.set_update_rule(postact=(z0n,"phi(z)"), param=["b"])

# build negative graph
print(" > Constructing Negative Phase Graph")
neg_phase = NGCGraph(K=1, name="rbm_neg")
neg_phase.set_cycle(nodes=[z1n_i, z0n, z1n]) # z1 -> z0 -> z1
neg_phase.set_learning_order([n1_n0, n0_n1]) # forces order: c, W, b
neg_phase.compile(batch_size=batch_size)

where we observe that the above “negative phase” graph allows us to emulate the general K-step Contrastive Diver-
gence algorithm (CD-K, where the commonly-used single step approximation, or K=1 is denoted as CD-1 or just “CD”).
Technically, a Harmonium should be run for a very high value of K (approaching infinity) in order to obtain a proper
sample from the Harmonium’s equilibrium/steady state distribution. However, this would be extremely costly to sim-
ulate and, as early studies [3] observed, often only a few or even a single step of this Markov chain proved to work
quite well, approximating the contrastive divergence objective (the learning algorithm’s namesake) instead of direct
maximum likelihood.

Notice we utilize a special helper function set_learning_order() in both the positive and negative phase graphs.
This function allows us to impose an explicit order (by taking in a list of the explicit cables we have created for a
particular graph) in the synaptic adjustment matrices that the NGCGraph simulation object will return (we do this to
ensure that the delta matrices exactly mirror the order of those that will be returned by the positive phase graph). This
is important to do when you need to coordinate the returned learning products of two or more NGCGraph objects, as
we will do shortly. The order we have imposed above ensures that we return a positive delta list and a negative delta
list that both respect the following ordering: db, dW, dc.

Now that we have the two graphs above, we can write the routine that will explicitly calculate the approximate synaptic
weight gradients as follows:
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x = # ... sampled data pattern (or batch of patterns) ...
Ns = x.shape[0]
## run positive phase
readouts, pos_delta = pos_phase.settle(

clamped_vars=[("z0","z", x)],
readout_vars=[("z1","S(z)")],
calc_delta=calc_update

)
z1_pos = readouts[0][2] # get positive phase binary latent state z1
## run negative phase
readouts, neg_delta = neg_phase.settle(

init_vars=[("z1n_i","S(z)", z1_pos)],
readout_vars=[("z0n","phi(z)"),("z1n","phi(z)")],
calc_delta=calc_update

)
x_hat = readouts[0][2] # return reconstruction (from negative phase)

## calculate the full Contrastive Divergence updates
delta = []
for i in range(len(pos_delta)):

pos_dx = pos_delta[i]
neg_dx = neg_delta[i]
dx = ( pos_dx - neg_dx ) * (1.0/(Ns * 1.0))
delta.append(dx) # multiply CD update by -1 to allow for minimization

opt.apply_gradients(zip(delta, pos_phase.theta))
neg_phase.set_theta(pos_phase.theta)

where we see that our synaptic update code carefully coordinates the positive and negative “halves” of our Harmonium
by not only combining their returned local updates to compute full/final weight adjustments but also ensures that we
set/point the synaptic parameters inside of the .theta of the negative graph to those in the .theta of the positive
graph.

Note that one could adapt the code above (or what is found in the Model Museum Harmonium model structure) to
emulate more advanced/powerful forms of Contrastive Divergence such as “persistent” Contrastive Divergence, where
we, instead of clamping the value of z1 to z1n_i, we inject random noise (or to a sample of the Harmonium’s latent
prior), and even an algorithm known as parallel tempering, where we would emulate multiple “negative graphs” and
use samples from all of them.

Before we go and fit our Harmonium to actual data, we need to write one final bit of functionality for our model – the
block Gibbs sampler to synthesize data samples given the model’s current set of synaptic parameters. This is simply
done as follows:

def sample(pos_phase, neg_phase, K, x_sample=None, batch_size=1):
samples = []
z1_sample = None
## set up initial condition for the block Gibbs sampler (use positive phase)
readouts, _ = pos_phase.settle(

clamped_vars=[("z0","z", x_sample)],
readout_vars=[("z1","S(z)")],
calc_delta=False

)
z1_sample = readouts[0][2]
pos_phase.clear()

(continues on next page)
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## run block Gibbs sampler to generate a chain of sampled patterns
neg_phase.inject([("z1n_i", "S(z)", z1_sample)]) # start chain at sample
for k in range(K):

readouts, _ = neg_phase.settle(
readout_vars=[("z0n", "phi(z)"), ("z1n", "phi(z)")],
calc_delta=False, K=1

)
z0_prob = readouts[0][2] # the "sample" of z0
z1_prob = readouts[1][2]
samples.append(z0_prob) # collect output sample
neg_phase.clear()
neg_phase.inject([("z1n_i", "phi(z)", z1_prob)])

return samples

Notice that this sampling function produces a list/array of samples in the order in which they were produced by the
Markov chain constructed above.

9.3 Using the Harmonium to Dream Up Handwritten Digits

We finally take the Harmonium that we have constructed above and fit it to some MNIST digits (the same dataset we
used in Walkthrough #1). Specifically, we will leverage the Harmonium, model in the Model Museum as it implements
the above core components/functions internally. In the
script sim_train.py, you will find a general simulated training loop similar to what we have developed in previous
walkthroughs that will fit our Harmonium to the MNIST database (unzip the file mnist.zip in the /walkthroughs/
data/ directory if you have not already) by cycling through it several times, saving the final (best) resulting to disk
within the rbm/ sub-directory. Go ahead and execute the training process as follows:

$ python sim_train.py --config=rbm/fit.cfg --gpu_id=0

which will fit/adapt your Harmonium to MNIST. Once the training process has finished, you can then run the following
to sample from Harmonium using block Gibbs sampling:

$ python sample_rbm.py --config=rbm/fit.cfg --gpu_id=0

which will take your trained Harmonium’s negative phase and use it to synthesize some digits. You should see inside
the rbm/ sub-directory something similar to:
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It is important to understand that the three rows of samples shown above come from particular points in the block
Gibbs sampling process. Specifically, the script that you ran sets the number of steps to be K=80 and stores/visualizes
a fantasized image every 8 steps. Furthermore, we initialize each of the three above Markov chains with a randomly
sampled image from the MNIST training dataset. Note that higher-quality samples can be obtained if one modifies the
earlier Harmonium to learn with persistent Contrastive Divergence or parallel tempering.

Finally, you can also run the viz_filters.py script to extract the acquired filters/ receptive fields of your trained
Harmonium, much as we did for the sparse coding and hierarchical ISTA models in Walkthroughs #4 and #5, as
follows:

$ python viz_filters.py --config=rbm/fit.cfg --gpu_id=0

to obtain a plot similar to the one below:

Interestingly enough, we see that our Harmonium has extracted what appears to be rough stroke features, which is
what it uses when sampling its binary latent feature detectors to compose final synthesized image patterns (each binary
feature detector serves as Boolean function that emits a 1 if the feature/filter is to be used and a 0 if not). In particular,
notice that the filters our Harmonium has acquired are a bit more prominent due to the weight decay we applied earlier
via z0_z1.set_decay(decay_kernel=("l1",0.00005)) (which tells the NGCGraph simulation object to apply
Laplacian/L1 decay to the W matrix of our RBM).

On a final note, the Harmonium we have built in this walkthrough is a classical Bernoulli Harmonium and thus as-
sumes that the input data features are binary in nature. If one wants to model data that is continuous/real-valued, then
the Harmonium model above would need to be adapted to utilize visible units that follow a distribution such as the
multivariate Gaussian distribution, yielding, for example, a Gaussian restricted Boltzmann machine (GRBM).
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WALKTHROUGH 7: SPIKING NEURAL NETWORKS

In this demonstration, we will design a three layer spiking neural network (SNN). We will specifically cover the special
base spiking node classes within ngc-learn’s nodes-and-cables system, particularly examining the properties of the
leaky integrate-and-fire (LIF) node with respect to modeling voltage and spike trains. In addition, we will cover how
to set up a simple online learning process for training the SNN on the MNIST database. After going through this
demonstration, you will:

1. Learn how to use/setup the SpNode_LIF (the LIF node class) and the SpNode_Enc (the Poisson spike train node
class) and visualize the voltage as a function of input current and the resulting spikes in a raster plot.

2. Build a spiking network using the SpNode_LIF and the SpNode_Enc nodes and simulate its adaptation to MNIST
image patterns by setting up a simple algorithm known as broadcast feedback alignment.

Note that the folders of interest to this demonstration are:

• walkthroughs/demo7/: this contains the necessary simulation scripts

• walkthroughs/data/: this contains the zipped copy of the digit image arrays

10.1 Encoding Data Patterns as Poisson Spike Trains

Before we start crafting a spiking neural network (SNN), let us first turn our attention to the data itself. Currently, the
patterns in the MNIST database are in continuous/real-valued form, i.e., pixel values normalized to the range of [0, 1].
While we could directly use them as input into a network of LIF neurons, as was done in [1] (meaning we would copy
the literal data vector each step in time, much as we have done in previous walkthroughs), it would be better if we could
first convert them to binary spike trains themselves given that SNNs are technically meant to process time-varying
information. While there are many ways to encode the data as spike trains, we will take the simplest approach in this
walkthrough and work with an encoding scheme known as rate encoding.

Specifically, rate encoding entails normalizing the original real-valued data vector x to the range of [0, 1] and then
treating each dimension x𝑖 as the probability that a spike will occur, thus yielding (for each dimension) a rate code with
a value of s𝑖. In other words, each feature drives a Bernoulli distribution of the form where s𝑖 ∼ ℬ(𝑛, 𝑝) where 𝑛 = 1
and 𝑝 = x𝑖. This, over time, results in a Poisson process where the rate of firing is dictated by solely in proportion to
a feature’s value.

To rate code your data, let’s start by using a simple function in ngc-learn’s ngclearn.utils.stat_utils module.
Assuming we have a simple 10-dimensional data vector x (of shape 1 x 10) with values in the range of [0, 1], we can
convert it to a spike train over 100 steps in time as follows:

import tensorflow as tf
import numpy as np
from ngclearn.utils import stat_utils as stat
import ngclearn.utils.viz_utils as viz

(continues on next page)
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seed = 1990
tf.random.set_seed(seed=seed)
np.random.seed(seed)

z = np.zeros((1,10),dtype=np.float32)
z[0,0] = 0.8
z[0,1] = 0.2
z[0,3] = 0.55
z[0,4] = 0.9
z[0,6] = 0.15
z[0,8] = 0.6
z[0,9] = 0.77
spikes = None
for t in range(100):

s_t = stat.convert_to_spikes(z, gain=1.0)
if t > 0:

spikes = tf.concat([spikes, s_t],axis=0)
else:

spikes = s_t
spikes = spikes.numpy()

viz.create_raster_plot(spikes, s=100, c="black")

where we notice that in the first dimension [0,0], fifth dimension [0,4], and the final dimension [0,9] set to fairly
high spike probabilities. This code will produce and save locally to disk the following raster plot for visualizing the
resulting spike trains:

where we see that the first, middle/fifth, and tenth dimensions do indeed result in denser spike trains. Raster plots are
simple visualization tool in computational neuroscience for examining the trial-by-trial variability of neural responses
and allow us to graphically examine timing (or the frequency of firing), one of the most important aspects of neuronal
action potentials/spiking patterns. Crucially notice that the function ngc-learn offers for converting to Poisson spike
trains does so on-the-fly, meaning that you can generate binary spike pattern vectors from a particular normalized real-
valued vector whenever you need to (this facilitates online learning setups quite well). If you examine the API for the
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convert_to_spikes() routine, you will also notice that you can also control the firing frequency further with the
gain argument – this is useful for recreating certain input spike settings report in certain computational neuroscience
publications. For example, with MNIST, it is often desired that the input firing rates are within the approximate range
of 0 to 63.75 Hertz (Hz) (as in [2]) and this can easily be recreated for data normalized to [0, 1] by setting the gain
parameter to 0.25 (we will also do this for this walkthrough for the model we will build later).

Note that another method offered by ngc-learn for converting your real-valued data vectors to Poisson spike trains is
through the SpNode_Enc. This node is a convenience node that effectively allows us to do the same thing as the code
snippet above (for example, upon inspecting its API, you will see an argument to its constructor is the gain that you
can set yourself). However, the SpNode_Enc conveniently allows the spike encoding process to be directly integrated
into the NGCGraph simulation
object that you will ultimately want to create (as we will do later in this walkthrough). Furthermore, internally, this
node provides you with some useful optional compartments that are calculated during simulation such as variable
traces/filters.

10.2 The Leaky Integrate-and-Fire Node

Now that we have considered how to transform our data into Poisson spike trains for use with an SNN we can move on to
building the SNN itself. One of the core nodes offered by ngc-learn to do this is the SpNode_LIF, or the leaky integrate-
and-fire (LIF) node (also referred to as the leaky integrator in some papers). This node has quite a few compartments
and constants but only a handful are important for understanding how this model governs spiking/firing rates during
an NGCGraph’s simulation window. Specifically, in this walkthrough, we will examine the following compartments –
dz_bu, dz_td, Jz, Vz, Sz, ref formally labeled as dz𝑏𝑢, dz𝑡𝑑, j𝑡, v𝑡, s𝑡, and r𝑡 (the subscript 𝑡 indicates that
this compartment variable takes on a certain value at a certain time step 𝑡)– and the following constants – V_thr, dt,
R, C, tau_m, ref_T formally labeled as 𝑉𝑡ℎ𝑟, ∆𝑡, 𝑅, 𝐶, 𝜏𝑚, and 𝑇𝑟𝑒𝑓 . (The other compartments and constants
that we do not cover here are useful for more advanced simulations/other situations and will be discussed in future
tutorials/walkthroughs.)

Now let us unpack this node by first defining the compartments:

• dz𝑏𝑢 and dz𝑡𝑑 are where signals from external sources (such as other nodes) are to be deposited (much like the
state node SNode) - note these signals contribute directly to the electrical current of the neurons within this node

• j𝑡: the current electrical current of the neurons within this node (specifically computed in this node’s default
state as j𝑡 = dz𝑏𝑢 + dz𝑡𝑑)

• v𝑡: the current membrane potential of the neurons within this node

• S𝑡: the current recording/reading of any spikes produced by this node’s neurons

• r𝑡: the current value of the absolute refractory variables - this accumulates with time (and forces neurons to rest)

and finally the constants:

• 𝑉𝑡ℎ𝑟: threshold that a neuron’s membrane potential must overcome before a spike is transmitted

• ∆𝑡: the integration time constant, on the order of milliseconds (ms)

• 𝑅: the neural (cell) membrane resistance, on the order of mega Ohms (𝑀Ω)

• 𝐶: the neural (cell) membrane capacitance, on the order of picofarads (𝑝𝐹 )

• 𝜏𝑚: membrane potential time constant (also 𝜏𝑚 = 𝑅 * 𝐶 - resistance times capacitance)

• 𝑇𝑟𝑒𝑓 : the length of a neuron’s absolute refractory period

With above defined, we can now explicitly lay out the underlying (linear) ordinary differential equation that the
SpNode_LIF evolves according to:

𝜏𝑚
𝜕v𝑡

𝜕𝑡
= (−v𝑡 + 𝑅j𝑡), where, 𝜏𝑚 = 𝑅𝐶
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and with some simple mathematical manipulations (leveraging the method of finite differences), we can derive the
Euler integrator employed by the SpNode_LIF as follows:

𝜏𝑚
𝜕v𝑡

𝜕𝑡
= (−v𝑡 + 𝑅j𝑡)

𝜏𝑚
v𝑡+Δ𝑡 − v𝑡

∆𝑡
= (−v𝑡 + 𝑅j𝑡)

v𝑡+Δ𝑡 = v𝑡 + (−v𝑡 + 𝑅j𝑡)
∆𝑡

𝜏𝑚

where we see that above integration tells us that the membrane potential of this node varies over time as a function
of the sum of its input electrical current j𝑡 (multiplied by the cell membrane resistance) and a leak (or decay) −v𝑡

modulated by the integration time constant divided by the membrane time constant. The SpNode_LIF allows you to
control the value of 𝜏𝑚 either directly (and will tell the node to set 𝑅 = 1 and 𝐶 = 𝜏𝑚 and the node will ignore any
argument values provided for 𝑅 and 𝐶) or via 𝑅 and 𝐶. (Notice that this default state of the SpNode_LIF assumes
that the input spike signals from external nodes that feed into dz𝑏𝑢 and dz𝑡𝑑) result in an instantaneous jump in each
neuron’s synaptic current J𝑡 but this assumption/simplification can be removed by setting SpNode_LIF’s argument
zeta to any non-zero value in order to tell the node that it needs to integrate its synaptic current over time - we will
not, however, cover this functionality in this walkthrough.)

In effect, given the above, every time the SpNode_LIF’s .step() function is called within an NGCGraph simulation
object, the above Euler integration of the membrane potential differential equation is happening each time step. Know-
ing this, the last item required to understand ngc-learn’s LIF node’s computation is related to its s𝑡. The spike reading is
computed simply by comparing the current membrane potential v𝑡 to the constant threshold defined by 𝑉𝑡ℎ𝑟 according
to the following piecewise function:

s𝑡,𝑖 =

{︃
1 v𝑡,𝑖 > 𝑉𝑡ℎ𝑟

0 otherwise.

where we see that if the 𝑖th neuron’s membrane potential exceeds the threshold 𝑉𝑡ℎ𝑟, then a voltage spike is emitted.
After a spike is emitted, the 𝑖th neuron within the node needs to be reset to its resting potential and this done with the final
compartment we mentioned, i.e., the refractory variable r𝑡. The refractory variable r𝑡 is important for hyperpolarizing
the 𝑖th neuron back to its resting potential (establishing a critical reset mechanism – otherwise, the neuron would fire
out of control after overcoming its threshold) and reducing the amount of spikes generated over time. This reduction is
one of the key factors behind the power efficiency of actual neuronal systems. Another aspect of ngc-learn’s refractory
variable is the temporal length of the reset itself, which is controlled by the 𝑇𝑟𝑒𝑓 (T_ref) constant – this yields what
is known as the absolute refractory period, or the interval of time at which a second action potential absolutely cannot
be initiated. If 𝑇𝑟𝑒𝑓 is set to be greater than zero, then the 𝑖th neuron that fires will be forced to remain at its resting
potential of zero for the duration of this refractory period.

Now that we understand the key compartments and constants inherent to an LIF node, we can start simulating one. Let
us visualize the spiking pattern of our LIF node by feeding into it a step current, where the electrical current starts at
0 then switches to 0.3 at 𝑡 = 10 (ms). Specifically, we can plot the input current, the neuron’s voltage, and its output
spikes as follows:

import os
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

# import general simulation utilities
import ngclearn.utils.viz_utils as viz
from ngclearn.engine.nodes.spnode_lif import SpNode_LIF
from ngclearn.engine.ngc_graph import NGCGraph

(continues on next page)
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seed = 1990 # 69
os.environ["CUDA_VISIBLE_DEVICES"]="0"
tf.random.set_seed(seed=seed)
np.random.seed(seed)

dt = 1e-3 # integration time constant
R = 5.0 # in mega Ohms
C = 5e-3 # in picofarads
V_thr = 1.0
ref_T = 0.0 # length of absolute refractory period
leak = 0
beta = 0.1
z1_dim = 1
integrate_cfg = {"integrate_type" : "euler", "dt" : dt}
# set refractory period to be really short
spike_kernel = {"V_thr" : V_thr, "ref_T" : ref_T, "R" : R, "C" : C}
trace_kernel = {"dt" : dt, "tau" : 5.0}

# set up a single LIF node system
lif = SpNode_LIF(name="lif_unit", dim=z1_dim, integrate_kernel=integrate_cfg,

spike_kernel=spike_kernel, trace_kernel=trace_kernel)
model = NGCGraph()
model.set_cycle(nodes=[lif])
info = model.compile(batch_size=1, use_graph_optim=False)

# create a synthetic electrical step current
current = tf.concat([tf.zeros([1,10]),tf.ones([1,190])*0.3],axis=1)

curr_rec = []
voltage = []
refract = []
spike_train = []

# simulate the LIF node
model.set_to_resting_state()
for t in range(current.shape[1]):

I_t = tf.ones([1,1]) * current[0,t]
curr_rec.append(float(I_t))
model.clamp([("lif_unit", "Jz", I_t)])
model.step(calc_delta=False)
J_t = model.extract("lif_unit", "Jz")
V_t = model.extract("lif_unit", "Vz")
S_t = model.extract("lif_unit", "Sz")
ref = model.extract("lif_unit", "ref")

refract.append(float(ref))
voltage.append(float(V_t))
spike_train.append(float(S_t))

cur_in = np.asarray(curr_rec)
mem_rec = np.asarray(voltage)
spk_rec = np.asarray(spike_train)

(continues on next page)
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viz.plot_lif_neuron(cur_in, mem_rec, spk_rec, refract, dt, thr_line=V_thr, max_mem_val=1.
→˓3,

title="LIF Node: Stepped Electrical Input")

which produces the following plot (saved as lif_plot.png locally to disk):

where we see that, given a build-up over time in the neuron’s membrane potential (since the current is constant and
non-zero after 10 ms), a spike is emitted once the value of the membrane potential exceeds the threshold (indicated by
the dashed horizontal line in the middle plot) 𝑉𝑡ℎ𝑟 = 1. Notice that if we play with the value of ref_T (the refactory
period 𝑇𝑟𝑒𝑓 ) and change it to something like ref_T = 10 * dt (ten times the integration time constant), we get the
following plot:
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where we see that after the LIF neuron fires, it remains stuck at its resting potential for a period of 0.01 ms (the short
flat periods in the red curve starting after the first spike).

10.3 Learning a Spiking Network with Broadcast Alignment

Now that we examined the SpNode_Enc and analyzed a single SpNode_LIF, we can now finally build a complete SNN
model to simulate. Building the SNN is no different than any other system in ngc-learn and is done as follows (note
that the settings shown below follow closely those reported in [2]):

x_dim = # dimensionality of input data
z_dim = # number of neurons for the internal layer
y_dim = # dimensionality of output space (or number of classes)
dt = 0.25 # integration time constant
tau_mem = 20 # membrane potential time constant
V_thr = 0.4 # spiking threshold
# Default for rec_T of 1 ms will be used - this is the default for SpNode_LIF(s)
integrate_cfg = {"integrate_type" : "euler", "dt" : dt}
spike_kernel = {"V_thr" : V_thr, "tau_mem" : tau_mem}
trace_kernel = {"dt" : dt, "tau" : 5.0}

# set up system -- notice for z2, a gain of 0.25 yields spike frequency of 63.75 Hz
z2 = SpNode_Enc(name="z2", dim=x_dim, gain=0.25, trace_kernel=trace_kernel)
mu1 = SNode(name="mu1", dim=z_dim, act_fx="identity", zeta=0.0)

(continues on next page)
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z1 = SpNode_LIF(name="z1", dim=z_dim, integrate_kernel=integrate_cfg,
spike_kernel=spike_kernel, trace_kernel=trace_kernel)

mu0 = SNode(name="mu0", dim=y_dim, act_fx="identity", zeta=0.0)
z0 = SpNode_LIF(name="z0", dim=y_dim, integrate_kernel=integrate_cfg,

spike_kernel=spike_kernel, trace_kernel=trace_kernel)
e0 = ENode(name="e0", dim=y_dim)
t0 = SNode(name="t0", dim=y_dim, beta=beta, integrate_kernel=integrate_cfg, leak=0.0)
d1 = FNode_BA(name="d1", dim=z_dim, act_fx="identity") # BA teaching node

# create cable wiring scheme relating nodes to one another
init_kernels = {"A_init" : ("gaussian", wght_sd), "b_init" : ("zeros",)}
dcable_cfg = {"type": "dense", "init_kernels" : init_kernels, "seed" : seed}
pos_scable_cfg = {"type": "simple", "coeff": 1.0}
neg_scable_cfg = {"type": "simple", "coeff": -1.0}

z2_mu1 = z2.wire_to(mu1, src_comp="Sz", dest_comp="dz_td", cable_kernel=dcable_cfg)
mu1.wire_to(z1, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=pos_scable_cfg)
z1_mu0 = z1.wire_to(mu0, src_comp="Sz", dest_comp="dz_td", cable_kernel=dcable_cfg)
mu0.wire_to(z0, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=pos_scable_cfg)
z0.wire_to(e0, src_comp="Sz", dest_comp="pred_mu", cable_kernel=pos_scable_cfg)
t0.wire_to(e0, src_comp="phi(z)", dest_comp="pred_targ", cable_kernel=pos_scable_cfg)
e0.wire_to(t0, src_comp="phi(z)", dest_comp="dz_td", cable_kernel=neg_scable_cfg)

this sets up an SNN structure with three layers – an input layer z2 containing the Poisson spike train nodes (which
will be driven by input data x), an internal layer of LIF nodes, and an output layer of LIF nodes. We have also opted
to simplify the choice of meta-parameters and directly set the membrane potential constant tau_mem directly (instead
of messing with membrane resistance and capacitance). Nothing else is out of the ordinary in creating an NGCGraph
except that we have also included a simple specialized convenience node d1, which will serve as a special part of our
SNN structure that will naturally give us an easy way to adapt this SNN’s parameters with an online learning process.
This convenience node is not all too different from a forward node (FNode) except it has been adapted to a sort of
“teaching node” format that effectively takes in its input signals in its dz compartment and multiplicatively combines
them with the special approximate derivative (or dampening) function developed in [1] (see FNode_BA for the details
of this special dampening function).

With the above nodes and cables set up all the remains is to define the SNN’s synaptic learning/adjustment rules.
Given our special teaching node d1, we can directly construct a simple learning scheme based on an algorithm known
as broadcast alignment (BA) [1], which, in short, posits that a special set of error feedback synapses (that a randomly
initialized and never adjusted during simulation) can directly transform and carry error signals from a particular spot
(such as the output layer of an SNN) back to any internal layer as needed. These backwards transmitted signals only
need to travel down a very short feedback pathway and the outputs of these randomly projected error signals (when
combined with the special dampening function mentioned above) can serve as powerful teaching signals to drive change
in synaptic efficacy. To craft the BA approach to learning an SNN, we can then utilize the feedback pathway created
by d1 to drive learning through ngc-learn’s typical Hebbian updates as shown below:

# set up the SNN update rules and make relevant edges aware of these
from ngclearn.engine.cables.rules.hebb_rule import HebbRule

rule1 = HebbRule() # create a local weighted Hebbian rule for internal layer
rule1.set_terms(terms=[(z2,"z"), (d1,"phi(z)")], weights=[1.0, (1.0/(x_dim * 1.0))])
z2_mu1.set_update_rule(update_rule=rule1, param=["A", "b"])

rule2 = HebbRule() # create a local weighted Hebbian rule for output layer
rule2.set_terms(terms=[(z1,"Sz"), (e0,"phi(z)")], weights=[1.0, (1.0/(z_dim * 1.0))])

(continues on next page)
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z1_mu0.set_update_rule(update_rule=rule2, param=["A", "b"])

where we notice two special things that the above code is doing in contrast to prior walkthroughs: 1) we have exposed
the lower-level local rule system of ngc-learn which allows the user/experimenter to define their own custom local
updates if needed (the default in ngc-learn is a simple two-term, unweighted Hebbian adjustment rule, which is what
you have been using in all prior walkthroughs without knowing it), and 2) we have modified the typical Hebbian update
rule to be a weighted Hebbian update by setting the weights of the post-activation terms to be a function of the number
of pre-synaptic neurons for a given layer (this is akin to a layer-wise learning rate and provided a simple means of
initializing the step size for gradient descent as in [1]).

With the learning rules, we can continue as normal and initialize and compile our the NGCGraph for our desired SNN
as follows:

# Set up graph - execution cycle/order
model = NGCGraph(name="snn_ba")
model.set_cycle(nodes=[z2, mu1, z1, mu0, z0, t0])
model.set_cycle(nodes=[e0])
model.set_cycle(nodes=[d1])
info = model.compile(batch_size=batch_size)
opt = tf.keras.optimizers.SGD(1.0) # create an SGD optimization rule with no learning␣
→˓rate

only noting that, because we have set our NGCGraph to use weighted Hebbian updates, we do not need to specify a
learning rate for our stochastic gradient descent optimization rule (as the learning rates are baked into the Hebbian rules
now).

The last item we would like to cover is how specifically the SNN system we have created above will be simulated.
Normally, after building an NGCGraph, you would generally use its .settle() function to simulate the processing of
data over a window of time (of length K). Although you could technically do this with the SNN too, since the SNN
is meant to learn online across a spike train, it is simpler and more appropriate to use ngc-learn’s lower-level online
simulation API (which was discussed in Tutorial #1). This will specifically allow us to integrate our SGD optimization
rule directly into and extract some special statistic from the step-by-step evolution process of our SNN as it processes
data-driven Poisson spike trains. The code we would need to do this is below:

x = # input pattern vector/matrix (real-valued & normalized to [0,1])
y = # labels/one-hot encodings associated with x

T = 100 # ms (length of simulation window)

model.set_to_resting_state() # set all neurons to their resting potentials
y_count = y * 0
y_hat = 0.0
for t in range(T):

model.clamp([("z2", "z", x), ("t0", "z", y_)])
delta = model.step(calc_delta=True)
y_hat = model.extract("z0", "Jz") + y_hat
y_count += model.extract("z0", "Sz")
if delta is not None:

opt.apply_gradients(zip(delta, model.theta)) # update synaptic efficacies
model.clear() # clear simulation object memory
# compute approximate Multinoulli distribution
y_hat = tf.nn.softmax(y_hat/T)
# get predicted labels from spike counts
y_pred = tf.cast(tf.argmax(y_count,1),dtype=tf.int32)
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where we see that we have explicitly designed the simulation loop by hand, giving us the flexibility to introduce the
synaptic updates at each time step. Notice that we also added in some extra statistics y_hat and y_count – y_hat is the
approximate label distribution produced by our SNN over a stimulus window of T = 100 milliseconds and y_count
stores the spike counts (one per class label/output node) for us to finally extract the model’s global predicted labels (by
taking the argmax of y_count to get y_pred).

The above code (as well as a few extra convenience utilities/wrapper functions) has been integrated into the Model
Museum as the official SNN_BA, which is the model that is imported for you in the provided train_sim.py script
(Note: unzip the file mnist.zip in the /walkthroughs/data/ directory if you have not already.) Go ahead and run
train_sim.py as follows:

$ python sim_train.py --config=snn/fit.cfg --gpu_id=0

which will simulate the training of your SNN-BA on the MNIST database for 30 epochs. This script will save your
trained SNN model to the /snn/ sub-directory from which you can then run the evaluation script (which simply
simulates your trained SNN on the MNIST test set but with the synaptic adjustment turned off). You should get an
output similar to the one below:

Ly = 1.4924614429473877 Acc = 0.9684000015258789

meaning that our three-layer SNN has nearly reached 97% test classification accuracy (recall that we are counting
spikes and, for each row in an evaluated test mini-batch matrix, the output LIF node with highest spike count at the
end of 100 ms is chosen as the SNN’s predicted label). This evaluation script also generates and saves to the /snn/
sub-directory a learning curve plot (recorded during the simulated training for both the training and development data
subsets) shown below:
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where we see that the SNN has decreased its approximate negative log likelihood from a starting point of about 2.30
nats to nearly 0.28 nats. This is bearing in mind that we have estimated class probabilities output by our SNN by probing
and averaging over electrical current values from 100 simulated milliseconds per test pattern mini-batch. We remark
that this constructed SNN is not particularly deep and with additional layers of SpNode_LIF nodes, improvements to
its accuracy and approximate log likelihood would be possible (the BA learning approach would, in principle, work
well for any number of layers). This is motivated by the results reported in [1], where additional layers were found to
improve generalization a bit more and, as reported in [2], using layers with many more LIF neurons were demonstrated
to boost predictive accuracy (with nearly 6400 LIF neurons).

With that, you have now walked through the process of constructing a full SNN and fit it to an image pattern dataset.
Note that our SNN_BA offers a bit more functionality than the SNN designed in [1] given that ours directly processes
Poisson spike trains while the one in [1] focused on processing the raw real-valued pattern vectors (copying the input
x to each time step). Furthermore, our SNN processing loop usefully approximates an output distribution by averaging
over electrical current inputs (allowing us to measure its predictive log likelihood).

There is certainly more to the story of spike trains far beyond the model of leaky integrate-and-fire neurons and Poisson
spike train encoding. Notably, there are many, many more neurobiological details that this type of modeling omits
and one exciting continual development of ngc-learn is to continue to incorporate and test its dynamics simulator
on an ever-increasing swath of spike-based nodes of increasing complexity and biological faithfulness, such as the
Hodgkin–Huxley model [3], as well as other learning mechanisms it is capable of simulating, such as spike-timing-
dependent plasticity (or STDP, which will be discussed in later tutorials/walkthroughs) as was used in [2]).

[1] Samadi, Arash, Timothy P. Lillicrap, and Douglas B. Tweed. “Deep learning with dynamic spiking neurons and
fixed feedback weights.” Neural computation 29.3 (2017): 578-602. [2] Diehl, Peter U., and Matthew Cook. “Unsuper-
vised learning of digit recognition using spike-timing-dependent plasticity.” Frontiers in computational neuroscience
9 (2015): 99. [3] Hodgkin, Alan L., and Andrew F. Huxley. “A quantitative description of membrane current and its
application to conduction and excitation in nerve.” The Journal of physiology 117.4 (1952): 500.
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CHAPTER

ELEVEN

THE MODEL MUSEUM

Predictive processing has undergone many important developments over the decades, dating back to Hermann von
Helmholtz’s theory of “unconscious inference” in perception which itself operationalized the ideas of the 18th century
philosopher Immanuel Kant. It has risen as a promising theoretical and mathematical model of various aspects of
neural circuitry in computational neuroscience, serving as one embodiment of the Bayesian brain hypothesis, and has
been shown to be a powerful computational modeling tool for cognitive science and statistical/machine learning. Many
different architectures/systems, often designed to serve one or a few particular modeling purposes, have been (and still
are being) proposed. Given this, one of ngc-learn’s aims is to capture an approximate snapshot of as many of these
architectures/ideas as possible.

Given the generality of the NGC computational framework [1], many flavors of predictive processing can be recov-
ered/derived and it is within ngc-learn’s Model Museum that we intend to model and preserve variant models (as they
historically have been and currently are being created). This allows current and future scientists, engineers, and en-
thusiasts to examine these models, much as one would curiously examine exhibits. such as paintings or preserved
mechanical inventions and technological artifacts, at a museum. The Model Museum also provides an opportunity
for those working in the domain of predictive processing to publish their successful structures/ideas that are presented
in publications and/or tested applications (contact us if you have a particular published or representative predictive
processing model that you would like exhibited and to be integrated into the Model Museum for the benefit of the
community). In parallel, since ngc-learn is an evolving library, we will be working to curate and update the museum
with representative models over time and several are already under development/testing (stay tuned for their release
across software releases/patches/edits).

As mentioned above, NGC predictive processing models have historically been designed to serve particular purposes,
thus we wrap their underlying NGC graphs in an agent structure that provides particular documented convenience
functions that allow the user/modeler to interact with such models according to their intended purpose/use. For example,
a published/public NGC model that was developed to classify data will offer functionality for categorization in a relevant
prediction routine while another one that was created to operate as a generative/density estimator will sport a routine(s)
for sampling/synthesization.

Current models that we have implemented in the Model Museum so far include:

1. GNCN-t1/Rao - the model proposed in (Rao & Ballard, 1999) [2]

2. GNCN-t1-Sigma/Friston - the model proposed in (Friston, 2008) [3]

3. GNCN-PDH - the model proposed in (Ororbia & Kifer, 2022) [1]

4. GNCN-t1-FFM - the model developed in (Whittington & Bogacz, 2017) [4]

5. GNCN-t1-SC - the model proposed in (Olshausen & Field, 1996) [5]

6. Harmonium - the model developed in (Smolensky, 1986; Hinton 1999) [6] [7]

7. SNN-BA - a generalization of the spiking model in (Samadi et al., 2017) [8]

(If there is a model you think should be exhibited/integrated into the Model Museum, and/or would like to contribute,
please write us at ago@cs.rit.edu or raise a github issue.)
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References: [1] Ororbia, A., and Kifer, D. The neural coding framework for learning generative models. Nature Com-
munications 13, 2064 (2022). [2] Rao, Rajesh PN, and Dana H. Ballard. “Predictive coding in the visual cortex: a
functional interpretation of some extra-classical receptive-field effects.” Nature neuroscience 2.1 (1999): 79-87. [3]
Friston, Karl. “Hierarchical models in the brain.” PLoS Computational Biology 4.11 (2008): e1000211. [4] Whit-
tington, James CR, and Rafal Bogacz. “An approximation of the error backpropagation algorithm in a predictive
coding network with local hebbian synaptic plasticity.” Neural computation 29.5 (2017): 1229-1262. [5] Olshausen,
B., Field, D. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature
381, 607–609 (1996). [6] Hinton, Geoffrey E. “Training products of experts by maximizing contrastive likelihood.”
Technical Report, Gatsby computational neuroscience unit (1999). [7] Smolensky, P. “Information Processing in Dy-
namical Systems: Foundations of Harmony Theory.” Parallel distributed processing: explorations in the microstructure
of cognition 1 (1986). [8] Samadi, Arash, Timothy P. Lillicrap, and Douglas B. Tweed. “Deep learning with dynamic
spiking neurons and fixed feedback weights.” Neural computation 29.3 (2017): 578-602.
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TWELVE

GNCN-T1 (RAO & BALLARD, 1999)

This circuit implements the model proposed in (Rao & Ballard, 1999) [1]. Specifically, this model is unsupervised
and can be used to process sensory pattern (row) vector(s) x to infer internal latent states. This class offers, beyond
settling and update routines, a projection function by which ancestral sampling may be carried out given the underlying
directed generative model formed by this NGC system.

The GNCN-t1 is graphically depicted by the following graph:

class ngclearn.museum.gncn_t1.GNCN_t1(args)
Structure for constructing the model proposed in:

Rao, Rajesh PN, and Dana H. Ballard. “Predictive coding in the visual cortex: a functional interpretation of
some extra-classical receptive-field effects.” Nature neuroscience 2.1 (1999): 79-87.

Note this model includes the Laplacian prior to induce some level of sparsity in the latent activities. This model,
under the NGC computational framework, is referred to as the GNCN-t1/Rao, according to the naming convention
in (Ororbia & Kifer 2022).
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Node Name Structure:
z3 -(z3-mu2)-> mu2 ;e2; z2 -(z2-mu1)-> mu1 ;e1; z1 -(z1-mu0-)-> mu0 ;e0; z0

Parameters args – a Config dictionary containing necessary meta-parameters for the GNCN-t1

DEFINITION NOTE:
args should contain values for the following:
* batch_size - the fixed batch-size to be fed into this model
* z_top_dim - # of latent variables in layer z3 (top-most layer)
* z_dim - # of latent variables in layers z1 and z2
* x_dim - # of latent variables in layer z0 or sensory x
* seed - number to control determinism of weight initialization
* wght_sd - standard deviation of Gaussian initialization of weights
* beta - latent state update factor
* leak - strength of the leak variable in the latent states
* lmbda - strength of the Laplacian prior applied over latent state activities
* K - # of steps to take when conducting iterative inference/settling
* act_fx - activation function for layers z1, z2, and z3
* out_fx - activation function for layer mu0 (prediction of z0) (Default: sigmoid)

project(z_sample)
Run projection scheme to get a sample of the underlying directed generative model given the clamped
variable z_sample

Parameters z_sample – the input noise sample to project through the NGC graph

Returns x_sample (sample(s) of the underlying generative model)

settle(x, calc_update=True)
Run an iterative settling process to find latent states given clamped input and output variables

Parameters

• x – sensory input to reconstruct/predict

• calc_update – if True, computes synaptic updates @ end of settling process (Default =
True)

Returns x_hat (predicted x)

calc_updates(avg_update=True, decay_rate=- 1.0)
Calculate adjustments to parameters under this given model and its current internal state values

Returns delta, a list of synaptic matrix updates (that follow order of .theta)

clear()

Clears the states/values of the stateful nodes in this NGC system

References: [1] Rao, Rajesh PN, and Dana H. Ballard. “Predictive coding in the visual cortex: a functional interpre-
tation of some extra-classical receptive-field effects.” Nature neuroscience 2.1 (1999): 79-87.
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GNCN-T1-SIGMA (FRISTON, 2008)

This circuit implements the model proposed in (Friston, 2008) [1]. Specifically, this model is unsupervised and can
be used to process sensory pattern (row) vector(s) x to infer internal latent states. This class offers, beyond settling and
update routines, a projection function by which ancestral sampling may be carried out given the underlying directed
generative model formed by this NGC system.

The GNCN-t1-Sigma is graphically depicted by the following graph:

class ngclearn.museum.gncn_t1_sigma.GNCN_t1_Sigma(args)
Structure for constructing the model proposed in:

Friston, Karl. “Hierarchical models in the brain.” PLoS Computational Biology 4.11 (2008): e1000211.

Note this model includes a Laplacian prior to induce some level of sparsity in the latent activities. This model,
under the NGC computational framework, is referred to as the GNCN-t1-Sigma/Friston, according to the naming
convention in (Ororbia & Kifer 2022).

Node Name Structure:
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z3 -(z3-mu2)-> mu2 ;e2; z2 -(z2-mu1)-> mu1 ;e1; z1 -(z1-mu0-)-> mu0 ;e0; z0
e2 -> e2 * Sigma2; e1 -> e1 * Sigma1 // Precision weighting

Parameters args – a Config dictionary containing necessary meta-parameters for the GNCN-t1-
Sigma

DEFINITION NOTE:
args should contain values for the following:
* batch_size - the fixed batch-size to be fed into this model
* z_top_dim: # of latent variables in layer z3 (top-most layer)
* z_dim: # of latent variables in layers z1 and z2
* x_dim: # of latent variables in layer z0 or sensory x
* seed: number to control determinism of weight initialization
* wght_sd: standard deviation of Gaussian initialization of weights
* beta: latent state update factor
* leak: strength of the leak variable in the latent states
* lmbda: strength of the Laplacian prior applied over latent state activities
* K: # of steps to take when conducting iterative inference/settling
* act_fx: activation function for layers z1, z2, and z3
* out_fx: activation function for layer mu0 (prediction of z0) (Default: sigmoid)

project(z_sample)
Run projection scheme to get a sample of the underlying directed generative model given the clamped
variable z_sample

Parameters z_sample – the input noise sample to project through the NGC graph

Returns x_sample (sample(s) of the underlying generative model)

settle(x, calc_update=True)
Run an iterative settling process to find latent states given clamped input and output variables

Parameters

• x – sensory input to reconstruct/predict

• calc_update – if True, computes synaptic updates @ end of settling process (Default =
True)

Returns x_hat (predicted x)

calc_updates(avg_update=True, decay_rate=- 1.0)
Calculate adjustments to parameters under this given model and its current internal state values

Returns delta, a list of synaptic matrix updates (that follow order of .theta)

clear()

Clears the states/values of the stateful nodes in this NGC system

References: [1] Friston, Karl. “Hierarchical models in the brain.” PLoS Computational Biology 4.11 (2008):
e1000211.
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CHAPTER

FOURTEEN

GNCN-PDH (ORORBIA & KIFER, 2020/2022)

This circuit implements one of the models proposed in (Ororbia & Kifer, 2022) [1]. Specifically, this model is unsu-
pervised and can be used to process sensory pattern (row) vector(s) x to infer internal latent states. This class offers,
beyond settling and update routines, a projection function by which ancestral sampling may be carried out given the
underlying directed generative model formed by this NGC system.

The GNCN-PDH is graphically depicted by the following graph:

class ngclearn.museum.gncn_pdh.GNCN_PDH(args)
Structure for constructing the model proposed in:

Ororbia, A., and Kifer, D. The neural coding framework for learning generative models. Nature Communications
13, 2064 (2022).

This model, under the NGC computational framework, is referred to as the GNCN-t1-Sigma/Friston, according
to the naming convention in (Ororbia & Kifer 2022).

Historical Note:
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(The arXiv paper that preceded the publication above is shown below:)
Ororbia, Alexander, and Daniel Kifer. “The neural coding framework for
learning generative models.” arXiv preprint arXiv:2012.03405 (2020).

Node Name Structure:
z3 -(z3-mu2)-> mu2 ;e2; z2 -(z2-mu1)-> mu1 ;e1; z1 -(z1-mu0-)-> mu0 ;e0; z0
z3 -(z3-mu1)-> mu1; z2 -(z2-mu0)-> mu0
e2 -> e2 * Sigma2; e1 -> e1 * Sigma1 // Precision weighting
z3 -> z3 * Lat3; z2 -> z2 * Lat2; z1 -> z1 * Lat1 // Lateral competition
e2 -(e2-z3)-> z3; e1 -(e1-z2)-> z2; e0 -(e0-z1)-> z1 // Error feedback

Parameters args – a Config dictionary containing necessary meta-parameters for the GNCN-PDH

DEFINITION NOTE:
args should contain values for the following:
* batch_size - the fixed batch-size to be fed into this model
* z_top_dim: # of latent variables in layer z3 (top-most layer)
* z_dim: # of latent variables in layers z1 and z2
* x_dim: # of latent variables in layer z0 or sensory x
* seed: number to control determinism of weight initialization
* wght_sd: standard deviation of Gaussian initialization of weights
* beta: latent state update factor
* leak: strength of the leak variable in the latent states
* K: # of steps to take when conducting iterative inference/settling
* act_fx: activation function for layers z1, z2, and z3
* out_fx: activation function for layer mu0 (prediction of z0) (Default: sigmoid)
* n_group: number of neurons w/in a competition group for z2 and z2 (sizes of z2 and z1 should be divisible
by this number)
* n_top_group: number of neurons w/in a competition group for z3 (size of z3 should be divisible by this
number)
* alpha_scale: the strength of self-excitation
* beta_scale: the strength of cross-inhibition

project(z_sample)
Run projection scheme to get a sample of the underlying directed generative model given the clamped
variable z_sample

Parameters z_sample – the input noise sample to project through the NGC graph

Returns x_sample (sample(s) of the underlying generative model)

settle(x, calc_update=True)
Run an iterative settling process to find latent states given clamped input and output variables

Parameters

• x – sensory input to reconstruct/predict

• calc_update – if True, computes synaptic updates @ end of settling process (Default =
True)
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Returns x_hat (predicted x)

calc_updates(avg_update=True, decay_rate=- 1.0)
Calculate adjustments to parameters under this given model and its current internal state values

Returns delta, a list of synaptic matrix updates (that follow order of .theta)

clear()

Clears the states/values of the stateful nodes in this NGC system

References: [1] Ororbia, A., and Kifer, D. The neural coding framework for learning generative models. Nature
Communications 13, 2064 (2022).
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CHAPTER

FIFTEEN

GNCN-T1-FFM (WHITTINGTON & BOGACZ, 2017)

This circuit implements the model proposed in ((Whittington & Bogacz, 2017) [1]. Specifically, this model is super-
vised and can be used to process sensory pattern (row) vector(s) x to predict target (row) vector(s) y. This class offers,
beyond settling and update routines, a prediction function by which ancestral projection is carried out to efficiently
provide label distribution or regression vector outputs. Note that “FFM” denotes “feedforward mapping”.

The GNCN-t1-FMM is graphically depicted by the following graph:

class ngclearn.museum.gncn_t1_ffm.GNCN_t1_FFM(args)
Structure for constructing the model proposed in:

Whittington, James CR, and Rafal Bogacz. “An approximation of the error backpropagation algorithm in a
predictive coding network with local hebbian synaptic plasticity.” Neural computation 29.5 (2017): 1229-1262.

This model, under the NGC computational framework, is referred to as the GNCN-t1-FFM, a slightly modified
from of the naming convention in (Ororbia & Kifer 2022, Supplementary Material). “FFM” denotes feedforward
mapping.
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Node Name Structure:
z3 -(z3-mu2)-> mu2 ;e2; z2 -(z2-mu1)-> mu1 ;e1; z1 -(z1-mu0-)-> mu0 ;e0; z0

Note that z3 = x and z0 = y, yielding a classifier or regressor

Parameters args – a Config dictionary containing necessary meta-parameters for the GNCN-t1-
FFM

DEFINITION NOTE:
args should contain values for the following:
* batch_size - the fixed batch-size to be fed into this model
* x_dim - # of latent variables in layer z3 or sensory input x
* z_dim - # of latent variables in layers z1 and z2
* y_dim - # of latent variables in layer z0 or output target y
* seed - number to control determinism of weight initialization
* wght_sd - standard deviation of Gaussian initialization of weights
* beta - latent state update factor
* leak - strength of the leak variable in the latent states
* lmbda - strength of the Laplacian prior applied over latent state activities
* K - # of steps to take when conducting iterative inference/settling
* act_fx - activation function for layers z1, z2
* out_fx - activation function for layer mu0 (prediction of z0 or y) (Default: identity)

predict(x)
Predicts the target (either a probability distribution over labels, i.e., p(y|x), or a vector of regression targets)
for a given x

Parameters z_sample – the input sample to project through the NGC graph

Returns y_sample (sample(s) of the underlying predictive model)

settle(x, y, calc_update=True)
Run an iterative settling process to find latent states given clamped input and output variables

Parameters

• x – sensory input to clamp top-most layer (z3) to

• y – target output activity, i.e., label or regression target

• calc_update – if True, computes synaptic updates @ end of settling process (Default =
True)

Returns y_hat (predicted y)

calc_updates(avg_update=True, decay_rate=- 1.0)
Calculate adjustments to parameters under this given model and its current internal state values

Returns delta, a list of synaptic matrix updates (that follow order of .theta)

clear()

Clears the states/values of the stateful nodes in this NGC system

References: [1] Whittington, James CR, and Rafal Bogacz. “An approximation of the error backpropagation algorithm
in a predictive coding network with local hebbian synaptic plasticity.” Neural computation 29.5 (2017): 1229-1262.
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CHAPTER

SIXTEEN

GNCN-T1-SC (OLSHAUSEN & FIELD, 1996)

This circuit implements the sparse coding model proposed in (Olshausen & Field, 1996) [1]. Specifically, this model
is unsupervised and can be used to process sensory pattern (row) vector(s) x to infer internal latent states. This class
offers, beyond settling and update routines, a projection function by which ancestral sampling may be carried out given
the underlying directed generative model formed by this NGC system.

The GNCN-t1-SC is graphically depicted by the following graph:

class ngclearn.museum.gncn_t1_sc.GNCN_t1_SC(args)
Structure for constructing the sparse coding model proposed in:

Olshausen, B., Field, D. Emergence of simple-cell receptive field properties by learning a sparse code for natural
images. Nature 381, 607–609 (1996).

Note this model imposes a factorial (Cauchy) prior to induce sparsity in the latent activities z1 (the latent code-
book). Synapses initialized from a (fan-in) scaled uniform distribution. This model would be named, under the
NGC computational framework naming convention (Ororbia & Kifer 2022), as the GNCN-t1/SC (SC = sparse
coding) or GNCN-t1/Olshausen.
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Node Name Structure:
p(z1) ; z1 -(z1-mu0)-> mu0 ;e0; z0
Cauchy prior applied for p(z1)

Note: You can also recover the model learned through ISTA by using, instead of a factorial prior over latents,
a thresholding function such as the “soft_threshold”. (Make sure you set “prior” to “none” in this case.) This
results in the GNCN-t1/SC emulating a system similar to that proposed in:

Daubechies, Ingrid, Michel Defrise, and Christine De Mol. “An iterative thresholding algorithm for linear inverse
problems with a sparsity constraint.” Communications on Pure and Applied Mathematics: A Journal Issued by
the Courant Institute of Mathematical Sciences 57.11 (2004): 1413-1457.

Parameters args – a Config dictionary containing necessary meta-parameters for the GNCN-t1/SC

DEFINITION NOTE:
args should contain values for the following:
* batch_size - the fixed batch-size to be fed into this model
* z_dim - # of latent variables in layers z1
* x_dim - # of latent variables in layer z0 or sensory x
* seed - number to control determinism of weight initialization
* beta - latent state update factor
* leak - strength of the leak variable in the latent states (Default = 0)
* prior - type of prior to use (Default = “cauchy”)
* lmbda - strength of the prior applied over latent state activities (only if prior != “none”)
* threshold - type of threshold to use (Default = “none”)
* thr_lmbda - strength of the threshold applied over latent state activities (only if threshold != “none”)
* n_group - must be > 0 if lat_type != None and s.t. (z_dim mod n_group) == 0
* K - # of steps to take when conducting iterative inference/settling
* act_fx - activation function for layers z1 (Default = identity)
* out_fx - activation function for layer mu0 (prediction of z0) (Default: identity)

project(z_sample)
Run projection scheme to get a sample of the underlying directed generative model given the clamped
variable z_sample

Parameters z_sample – the input noise sample to project through the NGC graph

Returns x_sample (sample(s) of the underlying generative model)

settle(x, K=- 1, cold_start=True, calc_update=True)
Run an iterative settling process to find latent states given clamped input and output variables

Parameters

• x – sensory input to reconstruct/predict

• K – number of steps to run iterative settling for

• cold_start – start settling process states from zero (Leave this to True)

• calc_update – if True, computes synaptic updates @ end of settling process (Default =
True)

Returns x_hat (predicted x)
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calc_updates(avg_update=True)
Calculate adjustments to parameters under this given model and its current internal state values

Returns delta, a list of synaptic matrix updates (that follow order of .theta)

clear()

Clears the states/values of the stateful nodes in this NGC system

References: [1] Olshausen, B., Field, D. Emergence of simple-cell receptive field properties by learning a sparse code
for natural images. Nature 381, 607–609 (1996).

115



ngc-learn, Release 0.4.0

116 Chapter 16. GNCN-t1-SC (Olshausen & Field, 1996)



CHAPTER

SEVENTEEN

HARMONIUM (SMOLENSKY, 1986)

This circuit implements the Harmonium model proposed in (Smolensky, 1986) [1]. Specifically, this model is unsu-
pervised and can be used to process sensory pattern (row) vector(s) x to infer internal latent states. This class offers,
beyond settling and update routines through Contrastive Divergence (Hinton 1999) [2], a block Gibbs sampling function
to generate a chain of synthesized patterns.

The Harmonium is technically defined by two NGC graphs. The first is the positive phase (“wake” phase) graph
depicted graphically below:

while second is the negative phase (“sleep” phase) graph depicted graphically below:
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class ngclearn.museum.harmonium.Harmonium(args)
Structure for constructing the Harmonium model proposed in:

Hinton, Geoffrey E. “Training products of experts by maximizing contrastive likelihood.” Technical Report,
Gatsby computational neuroscience unit (1999).

Node Name Structure:
z1 -(z1-z0)-> z0
z0 -(z0-z1)-> z1
Note: z1-z0 = (z0-z1)^T (transpose-tied synapses)

Another important reference for designing stable Harmoniums is here:

Hinton, Geoffrey E. “A practical guide to training restricted Boltzmann machines.” Neural networks: Tricks of
the trade. Springer, Berlin, Heidelberg, 2012. 599-619.

Note: if you set the samp_fx to the “identity”, you force the Harmonium to to work as a mean-field Harmo-
nium/Botlzmann machine

Parameters args – a Config dictionary containing necessary meta-parameters for the Harmonium

DEFINITION NOTE:
args should contain values for the following:
* batch_size - the fixed batch-size to be fed into this model
* z_dim - # of latent variables in layer z1
* x_dim - # of latent variables in layer z0 (or sensory x)
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* seed - number to control determinism of weight initialization
* wght_sd - standard deviation of Gaussian initialization of weights
* K - # of steps to take when conducting Contrastive Divergence
* act_fx - activation function for layer z1 (Default: sigmoid)
* out_fx - activation function for layer z0 (prediction of z0) (Default: sigmoid)
* samp_fx - sampling function for layer z1 (Default = bernoulli)

sample(K, x_sample=None, batch_size=1)
Samples the underlying harmonium to generate a chain of patterns from a block Gibbs sampling process.

Parameters

• K – number of steps to run the Gibbs sampler

• x_sample – inital condition for the sampler (Default = None), if None, this will generate
an initial sample of size (batch_size, z1_dim) where z1_dim is the dimensionality of the
latent state.

• batch_size – if x_sample is None, then this dictates how many samples in parallel to
create per step of running the Gibbs sampler

settle(x, calc_update=True)
Run an iterative settling process to find latent states given clamped input and output variables.

Parameters

• x – sensory input to reconstruct/predict

• calc_update – if True, computes synaptic updates @ end of settling process for both
NGC system and inference co-model (Default = True)

Returns x_hat (predicted x)

calc_updates(avg_update=True, decay_rate=- 1.0)
Calculate adjustments to parameters under this given model and its current internal state values

Returns delta, a list of synaptic updates (that follow order of pos_phase.theta)

clear()

Clears the states/values of the stateful nodes in this NGC system

References: [1] Smolensky, P. “Information Processing in Dynamical Systems: Foundations of Harmony Theory.” Par-
allel distributed processing: explorations in the microstructure of cognition 1 (1986). [2] Hinton, Geoffrey E. “Training
products of experts by maximizing contrastive likelihood.” Technical Report, Gatsby computational neuroscience unit
(1999).
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CHAPTER

EIGHTEEN

SNN-BA (SAMADI ET AL., 2017)

This circuit implements the spiking neural model of (Samadi et al., 2017) [1]. Specifically, this model is supervised and
can be used to process sensory pattern (row) vector(s) x to predict target (row) vector(s) y. This class offers, beyond
settling and update routines, a prediction function by which ancestral projection is carried out to efficiently provide
label distribution or regression vector outputs. Note that “SNN” denotes “spiking neural network” and “BA” stands
for “broadcast alignment”. This class model it does not feature a separate calc_updates() method like other models
since its settle() routine adjusts synaptic efficacies dynamically (if configured to do so).

The SNN-BA is graphically depicted by the following graph:

class ngclearn.museum.snn_ba.SNN_BA(args)
A spiking neural network (SNN) classifier that adapts its synaptic cables via broadcast alignment. Specifically,
this model is a generalization of the one proposed in:

Samadi, Arash, Timothy P. Lillicrap, and Douglas B. Tweed. “Deep learning with dynamic spiking neurons and
fixed feedback weights.” Neural computation 29.3 (2017): 578-602.

This model encodes its real-valued inputs as Poisson spike trains with spikes emitted at a rate of approximately
63.75 Hz. The internal nodes and output nodes operate under the leaky integrate-and-fire spike response model
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and operate with a relative refractory rate of 1.0 ms. The integration time constant for this model has been set to
0.25 ms.

Node Name Structure:
z2 -(z2-mu1)-> mu1 ; z1 -(z1-mu0-)-> mu0 ;e0; z0
e0 -> d1 and z1 -> d1, where d1 is a teaching signal for z1

Note that z2 = x and z0 = y, yielding a classifier

Parameters args – a Config dictionary containing necessary meta-parameters for the SNN-BA

DEFINITION NOTE:
args should contain values for the following:
* batch_size - the fixed batch-size to be fed into this model
* z_dim - # of latent variables in layers z1
* x_dim - # of latent variables in layer z2 or sensory x
* y_dim - # of variables in layer z0 or target y
* seed - number to control determinism of weight initialization
* wght_sd - standard deviation of Gaussian initialization of weights (optional)
* T - # of time steps to take when conducting iterative settling (if not online)

predict(x)
Predicts the target for a given x. Specifically, this function will return spike counts, one per class in y –
taking the argmax of these counts will yield the model’s predicted label.

Parameters z_sample – the input sample to project through the NGC graph

Returns y_sample (spike counts from the underlying predictive model)

settle(x, y=None, calc_update=True)
Run an iterative settling process to find latent states given clamped input and output variables, specifically
simulating the dynamics of the spiking neurons internal to this SNN model. Note that this functions returns
two outputs – the first is a count matrix (each row is a sample in mini-batch) and each column represents the
count for one class in y, and the second is an approximate probability distribution computed as a softmax
over an average across the electrical currents produced at each step of simulation.

Parameters

• x – sensory input to clamp top-most layer (z2) to

• y – target output activity, i.e., label target

• calc_update – if True, computes synaptic updates @ end of settling process (Default =
True)

Returns

y_count (spike counts per class in y), y_hat (approximate probability distribution for y)

clear()

Clears the states/values of the stateful nodes in this NGC system

References: [1] Samadi, Arash, Timothy P. Lillicrap, and Douglas B. Tweed. “Deep learning with dynamic spiking
neurons and fixed feedback weights.” Neural computation 29.3 (2017): 578-602.
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CHAPTER

NINETEEN

NODE

A Node represents one of the fundamental building blocks of an NGC system. These particular objects are meant to
perform, per simulated time step, a calculation of output activity values given an internal arrangement of compartments
(or sources where signals from other Node(s) are to be deposited).

19.1 Node Model

The Node class serves as a root class for the node building block objects of an NGC system/graph. This is a core
modeling component of general NGC computational systems. Node sub-classes within ngc-learn inherit from this
base class.

class ngclearn.engine.nodes.node.Node(node_type, name, dim)

Base node element (class from which other node types inherit basic properties from)

Parameters

• node_type – the string concretely denoting this node’s type

• name – str name of this node

• dim – number of neurons this node will contain

wire_to(dest_node, src_comp, dest_comp, cable_kernel=None, mirror_path_kernel=None, name=None,
short_name=None)

A wiring function that connects this node to another external node via a cable (or synaptic bundle)

Parameters

• dest_node – destination node (a Node object) to wire this node to

• src_comp – name of the compartment inside this node to transmit a signal from (to desti-
nation node)

• dest_comp – name of the compartment inside the destination node to transmit a signal to

• cable_kernel – Dict defining how to initialize the cable that will connect this node to the
destination node. The expected keys and corresponding value types are specified below:

’type’ type of cable to be created. If “dense” is specified, a DCable (dense ca-
ble/bundle/matrix of synapses) will be used to transmit/transform information
along.

’init_kernels’ a Dict specifying how parameters w/in the learnable parts of the cable
are to randomly initialized

’seed’ integer seed to deterministically control initialization of synapses in a DCable
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Note either cable_kernel, mirror_path_kernel MUST be set to something that is not
None

• mirror_path_kernel – 2-Tuple that allows a currently existing cable to be re-used as a
transformation. The value types inside each slot of the tuple are specified below:

cable_to_reuse (Tuple[0]) target cable (usually an existing DCable object) to shal-
low copy and mirror

mirror_type (Tuple[1]) how should the cable be mirrored? If “symm_tied” is spec-
ified, then the transpose of this cable will be used to transmit information from this
node to a destination node, if “anti_symm_tied” is specified, the negative transpose
of this cable will be used, and if “tied” is specified, then this cable will be used
exactly in the same way it was used in its source cable.

Note either cable_kernel, mirror_path_kernel MUST be set to something that is not
None

• name – the string name to be assigned to the generated cable (Default = None)

Note setting this to None will trigger the created cable to auto-name itself

inject(data)
Injects an externally provided named value (a vector/matrix) to the desired compartment within this node.

Parameters data – 2-Tuple containing a named external signal to clamp

compartment_name (Tuple[0]) the (str) name of the compartment to clamp this
data signal to.

signal (Tuple[1]) the data signal block to clamp to the desired compartment name

clamp(data, is_persistent=True)
Clamps an externally provided named value (a vector/matrix) to the desired compartment within this node.

Parameters

• data – 2-Tuple containing a named external signal to clamp

compartment_name (Tuple[0]) the (str) name of the compartment to clamp this
data signal to.

signal (Tuple[1]) the data signal block to clamp to the desired compartment
name

• is_persistent – if True, prevents this node from overriding the clamped data over
time (Default = True)

step(injection_table=None, skip_core_calc=False)
Executes this nodes internal integration/calculation for one discrete step in time, i.e., runs simulation of
this node for one time step.

Parameters

• injection_table –

• skip_core_calc – skips the core components of this node’s calculation (Default =
False)

calc_update(update_radius=- 1.0)
Calculates the updates to local internal synaptic parameters related to this specific node given current
relevant values (such as node-level precision matrices).
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Parameters update_radius – radius of Gaussian ball to constrain computed update matrices
by (i.e., clipping by Frobenius norm)

clear()

Wipes/clears values of each compartment in this node (and sets .is_clamped = False).

extract(comp_name)
Extracts the data signal value that is currently stored inside of a target compartment

Parameters comp_name – the name of the compartment in this node to extract data from

extract_params()

deep_store_state()

Performs a deep copy of all compartment statistics.

Returns Dict containing a deep copy of each named compartment of this node

19.2 SNode Model

The SNode class extends from the base Node class, and represents a (rate-coded) state node that follows a certain set of
settling dynamics. In conjunction with the corresponding ENode and FNode classes, this serves as the core modeling
component of a higher-level NGCGraph class used in simulation.

class ngclearn.engine.nodes.snode.SNode(name, dim, beta=1.0, leak=0.0, zeta=1.0, act_fx='identity',
batch_size=1, integrate_kernel=None, prior_kernel=None,
threshold_kernel=None, trace_kernel=None,
samp_fx='identity')

Implements a (rate-coded) state node that follows NGC settling dynamics according to:
d.z/d.t = -z * leak + dz + prior(z), where dz = dz_td + dz_bu * phi’(z)

where:
dz - aggregated input signals from other nodes/locations
leak - controls strength of leak variable/decay
prior(z) - distributional prior placed over z (such as a kurtotic prior)

Note that the above is used to adjust neural activity values via an integator inside a node. For example, if the
standard/default Euler integrator is used then the neurons inside this node are adjusted per step as follows:

z <- z * zeta + d.z/d.t * beta
where:

beta - strength of update to node state z
zeta - controls the strength of recurrent carry-over, if set to 0 no carry-over is used (stateless)

Compartments:
* dz_td - the top-down pressure compartment (deposited signals summed)
* dz_bu - the bottom-up pressure compartment, potentially weighted by phi’(x)) (deposited signals
summed)
* z - the state neural activities
* phi(z) - the post-activation of the state activities
* S(z) - the sampled state of phi(z) (Default = identity or f(phi(z)) = phi(z))
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* mask - a binary mask to be applied to the neural activities

Parameters

• name – the name/label of this node

• dim – number of neurons this node will contain/model

• beta – strength of update to adjust neurons at each simulation step (Default = 1)

• leak – strength of the leak applied to each neuron (Default = 0)

• zeta – effect of recurrent/stateful carry-over (Defaul = 1)

• act_fx – activation function – phi(v) – to apply to neural activities

Note if using either “kwta” or “bkwta”, please input how many winners should
win the competiton, i.e., use “kwta(N)” or “bkwta(N)” where N is an integer
> 0.

• batch_size – batch-size this node should assume (for use with static graph optimization)

• integrate_kernel – Dict defining the neural state integration process type. The ex-
pected keys and corresponding value types are specified below:

’integrate_type’ type integration method to apply to neural activity over time. If
“euler” is specified, Euler integration will be used (future ngc-learn versions
will support “midpoint”/other methods).

’use_dfx’ a boolean that decides if phi’(v) (activation derivative) is used in the
integration process/update.

Note specifying None will automatically set this node to use Euler integration
w/ use_dfx=False

• prior_kernel – Dict defining the type of prior function to apply over neural activities.
The expected keys and corresponding value types are specified below:

’prior_type’ type of (centered) distribution to use as a prior over neural activities.
If “laplace” is specified, a Laplacian distribution is used, if “cauchy” is speci-
fied, a Cauchy distribution will be used, if “gaussian” is specified, a Gaussian
distribution will be used, and if “exp” is specified, the exponential distribution
will be used.

’lambda’ the scale factor controlling the strength of the prior applied to neural
activities.

Note specifying None will result in no prior distribution being applied

• threshold_kernel – Dict defining the type of threshold function to apply over neural
activities. The expected keys and corresponding value types are specified below:

’threshold_type’ type of (centered) distribution to use as a prior over neural ac-
tivities. If “soft_threshold” is specified, a soft thresholding function is used,
and if “cauchy_threshold” is specified, a cauchy thresholding function is used,

’thr_lambda’ the scale factor controlling the strength of the threshold applied to
neural activities.

Note specifying None will result in no threshold function being applied

• trace_kernel – <unused> (Default = None)
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• samp_fx – the sampling/stochastic activation function – S(v) – to apply to neural activities
(Default = identity)

step(injection_table=None, skip_core_calc=False)
Executes this nodes internal integration/calculation for one discrete step in time, i.e., runs simulation of
this node for one time step.

Parameters

• injection_table –

• skip_core_calc – skips the core components of this node’s calculation (Default =
False)

clear()

Wipes/clears values of each compartment in this node (and sets .is_clamped = False).

19.3 ENode Model

The ENode class extends from the base Node class, and represents a (rate-coded) error node simplified to its fixed-point
form. In conjunction with the corresponding SNode and FNode classes, this serves as the core modeling component of
a higher-level NGCGraph class used in simulation.

class ngclearn.engine.nodes.enode.ENode(name, dim, error_type='mse', act_fx='identity', batch_size=1,
precis_kernel=None, constraint_kernel=None, ex_scale=1.0)

Implements a (rate-coded) error node simplified to its fixed-point form:
e = target - mu // in the case of squared error (Gaussian error units)
e = signum(target - mu) // in the case of absolute error (Laplace error units)

where:
target - a desired target activity value (target = pred_targ)
mu - an external prediction signal of the target activity value (mu = pred_mu)

Compartments:
* pred_mu - prediction signals (deposited signals summed)
* pred_targ - target signals (deposited signals summed)
* z - the error neural activities, set as z = e
* phi(z) - the post-activation of the error activities in z
* L - the local loss represented by the error activities
* avg_scalar - multiplies L and z by (1/avg_scalar)

Parameters

• name – the name/label of this node

• dim – number of neurons this node will contain/model

• error_type – type of distance/error measured by this error node. Setting this to “mse”
will set up squared-error neuronal units (derived from L = 0.5 * ( Sum_j (target - mu)^2_j
)), and “mae” will set up mean absolute error neuronal units (derived from L = Sum_j
|target - mu| ).

• act_fx – activation function – phi(v) – to apply to error activities (Default = “identity”)
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• batch_size – batch-size this node should assume (for use with static graph optimization)

• precis_kernel – 2-Tuple defining the initialization of the precision weighting synapses
that will modulate the error neural activities. For example, an argument could be: (“uni-
form”, 0.01) The value types inside each slot of the tuple are specified below:

init_scheme (Tuple[0]) initialization scheme, e.g., “uniform”, “gaussian”.

init_scale (Tuple[1]) scalar factor controlling the scale/magnitude of initializa-
tion distribution, e.g., 0.01.

Note specifying None will result in precision weighting being applied to the error
neurons. Understand that care should be taken w/ respect to this particular
argument as precision synapses involve an approximate inversion throughout
simulation steps

• constraint_kernel – Dict defining the constraint type to be applied to the learnable
parameters of this node. The expected keys and corresponding value types are specified
below:

’clip_type’ type of clipping constraint to be applied to learnable parame-
ters/synapses. If “norm_clip” is specified, then norm-clipping will be applied
(with a check if the norm exceeds “clip_mag”), and if “forced_norm_clip” then
norm-clipping will be applied regardless each time apply_constraint() is called.

’clip_mag’ the magnitude of the worse-case bounds of the clip to apply/enforce.

’clip_axis’ the axis along which the clipping is to be applied (to each matrix).

Note specifying None will mean no constraints are applied to this node’s param-
eters

• ex_scale – a scale factor to amplify error neuron signals (Default = 1)

step(injection_table=None, skip_core_calc=False)
Executes this nodes internal integration/calculation for one discrete step in time, i.e., runs simulation of
this node for one time step.

Parameters

• injection_table –

• skip_core_calc – skips the core components of this node’s calculation (Default =
False)

calc_update(update_radius=- 1.0)
Calculates the updates to local internal synaptic parameters related to this specific node given current
relevant values (such as node-level precision matrices).

Parameters update_radius – radius of Gaussian ball to constrain computed update matrices
by (i.e., clipping by Frobenius norm)

compute_precision(rebuild_cov=True)
Co-function that pre-computes the precision matrices for this NGC node. NGC uses the Cholesky-
decomposition form of precision (Sigma)^{-1}

Parameters rebuild_cov – rebuild the underlying covariance matrix after re-computing pre-
cision (Default = True)

clear()

Wipes/clears values of each compartment in this node (and sets .is_clamped = False).
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19.4 FNode Model

The FNode class extends from the base Node class, and represents a stateless node that simply aggregates (via sum-
mation) its received inputs. In conjunction with the corresponding SNode and ENode classes, this serves as the core
modeling component of a higher-level NGCGraph class used in simulation.

class ngclearn.engine.nodes.fnode.FNode(name, dim, act_fx='identity', batch_size=1)

Implements a feedforward (stateless) transmission node:
z = dz

where:
dz - aggregated input signals from other nodes/locations

Compartments:
* dz - incoming pressures/signals (deposited signals summed)
* z - the state values/neural activities, set as: z = dz
* phi(z) - the post-activation of the neural activities

Parameters

• name – the name/label of this node

• dim – number of neurons this node will contain/model

• act_fx – activation function – phi(v) – to apply to neural activities

• batch_size – batch-size this node should assume (for use with static graph optimization)

step(injection_table=None, skip_core_calc=False)
Executes this nodes internal integration/calculation for one discrete step in time, i.e., runs simulation of
this node for one time step.

Parameters

• injection_table –

• skip_core_calc – skips the core components of this node’s calculation (Default =
False)
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CHAPTER

TWENTY

CABLE

A Cable represents one of the fundamental building blocks of an NGC system. These particular objects are meant
to serve as the connectors between Node(s), passing along or transforming signals from the source point (a compart-
ment, or receiving area, within a particular node) to a destination point (another compartment in a different node) and
transforming such signals through synaptic parameters.

20.1 Cable Model

The Cable class serves as a root class for the wire building block objects of an NGC system/graph. This is a core
modeling component of general NGC computational systems. Cable sub-classes within ngc-learn inherit from this
base class.

class ngclearn.engine.cables.cable.Cable(cable_type, inp, out, name=None, seed=69)
Base cable element (class from which other cable types inherit basic properties from)

Parameters

• cable_type – the string concretely denoting this cable’s type

• inp – 2-Tuple defining the nodal points that this cable will connect. The value types inside
each slot of the tuple are specified below:

input_node (Tuple[0]) the source/input Node object that this cable will carry
signal information from

input_compartment (Tuple[1]) the compartment within the source/input Node
that signals will extracted and transmitted from

• out – 2-Tuple defining the nodal points that this cable will connect. The value types inside
each slot of the tuple are specified below:

input_node (Tuple[0]) the destination/output Node object that this cable will
carry signal information to

input_compartment (Tuple[1]) the compartment within the destination/output
Node that signals transmitted and deposited into

• name – the string name of this cable (Default = None which creates an auto-name)

• seed – integer seed to control determinism of any underlying synapses associated with
this cable

propagate()

Internal transmission function that computes the correct transformation of a source node to a destination
node
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Returns the resultant transformed signal (transformation f information from “node”)

set_update_rule(preact=None, postact=None, update_rule=None, gamma=1.0, use_mod_factor=False,
param=None, decay_kernel=None)

Sets the synaptic adjustment rule for this cable (currently a 2-factor local synaptic Hebbian update rule).

Parameters

• preact – 2-Tuple defining the pre-activity/source node of which the first factor the
synaptic update rule will be extracted from. The value types inside each slot of the
tuple are specified below:

preact_node (Tuple[0]) the physical node that offers a pre-activity signal for the
first factor of the synaptic/cable update

preact_compartment (Tuple[1]) the component in the preact_node to extract
the necessary signal to compute the first factor the synaptic/cable update

• postact – 2-Tuple defining the post-activity/source node of which the second factor
the synaptic update rule will be extracted from. The value types inside each slot of the
tuple are specified below:

postact_node (Tuple[0]) the physical node that offers a post-activity signal for
the second factor of the synaptic/cable update

postact_compartment (Tuple[1]) the component in the postact_node to extract
the necessary signal to compute the second factor the synaptic/cable update

• update_rule – a specific update rule to use with the parameters of this cable

• gamma – scaling factor for the synaptic update

• use_mod_factor – if True, triggers the modulatory matrix weighting factor to be
applied to the resultant synaptic update

Note This is un-tested/not fully integrated

• param – a list of strings, each containing named parameters that are to be learned w/in
this cable

• decay_kernel – 2-Tuple defining the type of weight decay to be applied to the
synapses. The value types inside each slot of the tuple are specified below:

decay_type (Tuple[0]) string indicating which type of weight decay to use, “l2”
will trigger L2-penalty decay, while “l1” will trigger L1-penalty decay

decay_coefficient (Tuple[1]) scalar/float to control magnitude of decay applied
to computed local updates

calc_update()

Calculates the updates to the internal synapses that compose this cable given this cable’s pre-configured
synaptic update rule.

Parameters clip_kernel – radius of Gaussian ball to constrain computed update matrices
by (i.e., clipping by Frobenius norm)
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20.2 DCable Model

The DCable class extends from the base Cable class and represents a dense transform of signals from one nodal point
to another. Signals that travel across it through a set of synaptic parameters (and potentially a base-rate/bias shift
parameter). In conjunction with the corresponding SCable class, this serves as the core modeling component of a
higher-level NGCGraph class used in simulation.

class ngclearn.engine.cables.dcable.DCable(inp, out, init_kernels=None, shared_param_path=None,
clip_kernel=None, constraint_kernel=None, seed=69,
name=None)

A dense cable that transforms signals that travel across via a bundle of synapses. (In other words, a linear
projection followed by an optional base-rate/bias shift.)

Note: a dense cable only contains two possible learnable parameters, “A” and “b” each with only two terms for
their local Hebbian updates.

Parameters

• inp – 2-Tuple defining the nodal points that this cable will connect. The value types inside
each slot of the tuple are specified below:

input_node (Tuple[0]) the source/input Node object that this cable will carry
signal information from

input_compartment (Tuple[1]) the compartment within the source/input Node
that signals will extracted and transmitted from

• out – 2-Tuple defining the nodal points that this cable will connect. The value types inside
each slot of the tuple are specified below:

input_node (Tuple[0]) the destination/output Node object that this cable will
carry signal information to

input_compartment (Tuple[1]) the compartment within the destination/output
Node that signals transmitted and deposited into

• w_kernel – an N-Tuple defining type of scheme to randomly initialize weights.

scheme (Tuple[0]) triggers the type of initalization scheme, for example, “gaus-
sian” will apply an elementwise Gaussian initialization. (See the documen-
tation for init_weights() in ngclearn.utils.transform_utils for details on all the
types of initializations and their string codes that can be used.)

scheme_arg1 (Tuple[1]) first argument to control the initialization (for many
schemes, setting this value to 1.0 or even omitting it is acceptable given
that this parameter is ignored, for example, in “unif_scale”, the second ar-
gument would be ignored.) (See the documentation for init_weights() in ng-
clearn.utils.transform_utils for details on all the types of initializations and
their extra arguments.)

scheme_arg2 (Tuple[2]) second argument to control the initialization – this is
generally only necessary to set in the case of lateral competition initialization
schemes, such as in the case of “lkwta” which requires a 3-Tuple specified
as follows: (“lkwta”,alpha_scale,beta_scale) where alpha_scale controls the
strength of self-excitation and beta_scale controls the strength of the cross-unit
inhibition.

• b_kernel – 2-Tuple defining type of scheme to randomly initialize weights.
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scheme (Tuple[0]) triggers the type of initalization scheme, for example, “gaus-
sian” will apply an elementwise Gaussian initialization. (See the documen-
tation for init_weights() in ngclearn.utils.transform_utils for details on all the
types of initializations and their string codes that can be used.)

scheme_arg1 (Tuple[1]) first argument to control the initialization (for many
schemes, setting this value to 1.0 or even omitting it is acceptable given
that this parameter is ignored, for example, in “unif_scale”, the second ar-
gument would be ignored.) (See the documentation for init_weights() in ng-
clearn.utils.transform_utils for details on all the types of initializations and
their extra arguments.)

• shared_param_path –

• clip_kernel – 3-Tuple defining type of clipping to apply to calculated synaptic adjust-
ments.

clip_type (Tuple[0]) type of clipping constraint to apply. If “hard_clip” is
set, then a hard-clipping routine is applied (ignoring “clip_axis”) while
“norm_clip” clips by checking if the norm exceeds “clip_value” along
“clip_axis”. Note that “hard_clip” will also be applied to biases (while
“clip_norm” is not).

clip_value (Tuple[1]) the magnitude of the worse-case bounds of the clip to ap-
ply/enforce.

clip_axis (Tuple[2]) the axis along which the clipping is to be applied (to each
matrix).

Note specifying None will mean no clipping is applied to this cable’s calculated
updates

• constraint_kernel – Dict defining the constraint type to be applied to the learnable
parameters of this cable. The expected keys and corresponding value types are specified
below:

’clip_type’ type of clipping constraint to be applied to learnable parame-
ters/synapses. If “norm_clip” is specified, then norm-clipping will be applied
(with a check if the norm exceeds “clip_mag”), and if “forced_norm_clip” then
norm-clipping will be applied regardless each time apply_constraint() is called.

’clip_mag’ the magnitude of the worse-case bounds of the clip to apply/enforce.

’clip_axis’ the axis along which the clipping is to be applied (to each matrix).

Note specifying None will mean no constraints are applied to this cable’s param-
eters

• name – the string name of this cable (Default = None which creates an auto-name)

• seed – integer seed to control determinism of any underlying synapses associated with
this cable

propagate()

Internal transmission function that computes the correct transformation of a source node to a destination
node

Returns the resultant transformed signal (transformation f information from “node”)

calc_update()

Calculates the updates to the internal synapses that compose this cable given this cable’s pre-configured
synaptic update rule.

134 Chapter 20. Cable



ngc-learn, Release 0.4.0

Parameters clip_kernel – radius of Gaussian ball to constrain computed update matrices
by (i.e., clipping by Frobenius norm)

20.3 SCable Model

The SCable class extends from the base Cable class and represents a simple carry-over of signals from one nodal
point to another. Signals that travel across it can either be carried directly (an identity transform) or multiplied by a
scalar amplification coefficient. In conjunction with the corresponding DCable class, this serves as the core modeling
component of a higher-level NGCGraph class used in simulation.

class ngclearn.engine.cables.scable.SCable(inp, out, coeff=1.0, name=None, seed=69)
A simple cable that, at most, applies a scalar amplification of signals that travel across it. (Otherwise, this cable
works like an identity carry-over.)

Parameters

• inp – 2-Tuple defining the nodal points that this cable will connect. The value types inside
each slot of the tuple are specified below:

input_node (Tuple[0]) the source/input Node object that this cable will carry
signal information from

input_compartment (Tuple[1]) the compartment within the source/input Node
that signals will extracted and transmitted from

• out – 2-Tuple defining the nodal points that this cable will connect. The value types inside
each slot of the tuple are specified below:

input_node (Tuple[0]) the destination/output Node object that this cable will
carry signal information to

input_compartment (Tuple[1]) the compartment within the destination/output
Node that signals transmitted and deposited into

• coeff – a scalar float to control any signal scaling associated with this cable

• name – the string name of this cable (Default = None which creates an auto-name)

• seed – integer seed to control determinism of any underlying synapses associated with
this cable

propagate()

Internal transmission function that computes the correct transformation of a source node to a destination
node

Returns the resultant transformed signal (transformation f information from “node”)
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CHAPTER

TWENTYONE

NGCGRAPH

An NGCGraph represents one of the core structural components of an NGC system. This particular object is what
Node(s) and Cable(s) are ultimately embedded/integrated into in order to simulate a full NGC process (key functions
include the primary settling process and synaptic update calculation routine). Furthermore, the NGCGraph contains
several tool functions to facilitate analysis of the system evolved over time.

21.1 NGC Graph

The NGCGraph class serves as a core building block for forming a complete NGC computational processing system.

class ngclearn.engine.ngc_graph.NGCGraph(K=5, name='ncn', batch_size=1)
Implements the full model structure/graph for an NGC system composed of nodes and cables. Note that when
instantiating this object, it is important to call .compile(), like so:

graph = NGCGraph(. . . )
info = graph.compile()

Parameters

• K – number of iterative inference/settling steps to simulate

• name – (optional) the name of this projection graph (Default=”ncn”)

• batch_size – fixed batch-size that the underlying compiled static graph system should
assume (Note that you can set this also as an argument to .compile() )

Note if “use_graph_optim” is set to False, then this argument is not meaningful
as the system will work with variable-length batches

set_cycle(nodes, param_order=None)
Set an execution cycle in this graph

Parameters nodes – an ordered list of Node(s) to create an execution cycle for

compile(use_graph_optim=True, batch_size=- 1)
Executes a global “compile” of this simulation object to ensure internal system coherence. (Only call this
function after the constructor has been set).

Parameters

• use_graph_optim – if True, this simulation will use static graph acceleration (De-
fault = True)
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• batch_size – if > 0, will set the integer global batch_size of this simulation object
(otherwise, self.batch_size will be used)

Returns a dictionary containing post-compilation information about this simulation object

clone_state()

Clones the entire state of this graph (in terms of signals/tensors) and stores each node’s state dictionary in
global has map

Returns a Dict (hash table) containing string names that map to physical Node objects

set_to_state(state_map)
Set every state of every node in this graph to the values contained in the global Dict (hash table) “state_map”

Parameters state_map – a Dict (hash table) containing string names that map to physical
Node objects

extract(node_name, node_var_name)
Extract a particular signal from a particular node embedded in this graph

Parameters

• node_name – name of the node from the NGC graph to examine

• node_var_name – compartment name w/in Node to extract signal from

Returns an extracted signal (vector/matrix) OR None if either the node does not exist or the
entire system has not been simulated (meaning that no node dynamics have been run yet)

getNode(node_name)
Extract a particular node from this graph

Parameters node_name – name of the node from the NGC graph to examine

Returns the desired Node (object) or None if the node does not exist

clamp(clamp_targets)
Clamps an externally provided named value (a vector/matrix) to the desired compartment within a partic-
ular Node of this NGC graph. Note that clamping means this value typically means the value clamped on
will persist (it will NOT evolve according to the injected node’s dynamics over simulation steps, unless
is_persistent = True).

Parameters clamp_targets – 3-Tuple containing a named external signal to clamp

node_name (Tuple[0]) the (str) name of the node to clamp a data signal to.

compartment_name (Tuple[1]) the (str) name of the node’s compartment to
clamp this data signal to.

signal (Tuple[2]) the data signal block to clamp to the desired compartment name

inject(injection_targets)
Injects an externally provided named value (a vector/matrix) to the desired compartment within a particular
Node of this NGC graph. Note that injection means this value does not persist (it will evolve according to
the injected node’s dynamics over simulation steps).

Parameters

• injection_targets – 3-Tuple containing a named external signal to clamp

node_name (Tuple[0]) the (str) name of the node to clamp a data signal to.

compartment_name (Tuple[1]) the (str) name of the compartment to clamp this
data signal to.

138 Chapter 21. NGCGraph



ngc-learn, Release 0.4.0

signal (Tuple[2]) the data signal block to clamp to the desired compartment
name

• is_persistent – if True, clamped data value will persist throughout simulation (De-
fault = True)

settle(clamped_vars=None, readout_vars=None, init_vars=None, cold_start=True, K=- 1, debug=False,
masked_vars=None, calc_delta=True)

Execute this NGC graph’s iterative inference using the execution pathway(s) defined at construc-
tion/initialization.

Parameters

• clamped_vars – list of 3-tuple strings containing named Nodes, their compartments,
and values to (persistently) clamp on. Note that this list takes the form: [(node1_name,
node1_compartment, value), node2_name, node2_compartment, value),. . . ]

• readout_vars – list of 2-tuple strings containing Nodes and their compartments to
read from (in this function’s output). Note that this list takes the form: [(node1_name,
node1_compartment), node2_name, node2_compartment),. . . ]

• init_vars – list of 3-tuple strings containing named Nodes, their compartments, and
values to initialize each Node from. Note that this list takes the form: [(node1_name,
node1_compartment, value), node2_name, node2_compartment, value),. . . ]

• cold_start – initialize all non-clamped/initialized Nodes (i.e., their compartments
contain None) to zero-vector starting points/resting states

• K – number simulation steps to run (Default = -1), if <= 0, then self.K will be used
instead

• debug – <UNUSED>

• masked_vars – list of 4-tuple that instruct which
nodes/compartments/masks/clamped values to apply. This list is used to trig-
ger auto-associative recalls from this NGC graph. Note that this list takes
the form: [(node1_name, node1_compartment, mask, value), node2_name,
node2_compartment, mask, value),. . . ]

• calc_delta – compute the list of synaptic updates for each learnable parameter
within .theta? (Default = True)

Returns

readouts, delta; where “readouts” is a 3-tuple list of the form [(node1_name,
node1_compartment, value), node2_name, node2_compartment, value),. . . ], and
“delta” is a list of synaptic adjustment matrices (in the same order as .theta)

calc_updates(debug_map=None)
Calculates the updates to synaptic weight matrices along each learnable wire within this graph via a gen-
eralized Hebbian learning rule.

Parameters debug_map – (Default = None), a Dict to place named signals inside (for debug-
ging)

apply_constraints()

Apply any constraints to the signals embedded in this graph. This function will execute any of the
following pre-configured constraints:
1) compute new precision matrices (if applicable)
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2) project weights to adhere to vector norm constraints

clear()

Clears/deletes any persistent signals currently embedded w/in this graph’s Nodes
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CHAPTER

TWENTYTWO

PROJECTIONGRAPH

A ProjectionGraph represents one of the core structural components of an NGC system. To use a projection graph,
Node(s) and Cable(s) must be embedded/integrated into in order to simulate an ancestral projection/sampling process.
Note that ProjectionGraph is only useful if an NGCGraph has been created, given that a projection graph is meant to
offer non-trainable functionality, particularly fast inference, to an NGC computational system.

22.1 Projection Graph

The ProjectionGraph class serves as a core building block for forming a complete NGC computational processing
system (particularly with respect to external processes such as projection/sampling).

class ngclearn.engine.proj_graph.ProjectionGraph(name='sampler')
Implements a projection graph – useful for conducting ancestral sampling of a directed generative model or
ancestral projection of a clamped graph. Note that when instantiating this object, it is important to call .compile(),
like so:

graph = ProjectionGraph(. . . )
info = graph.compile()

Parameters name – the name of this projection graph

set_cycle(nodes)
Set execution cycle for this graph

Parameters nodes – an ordered list of Node(s) to create an execution cycle for

extract(node_name, node_var_name)
Extract a particular signal from a particular node embedded in this graph

Parameters

• node_name – name of the node from the NGC graph to examine

• node_var_name – compartment name w/in Node to extract signal from

Returns an extracted signal (vector/matrix) OR None if node does not exist

getNode(node_name)
Extract a particular node from this graph

Parameters node_name – name of the node from the NGC graph to examine

Returns the desired Node (object)
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project(clamped_vars=None, readout_vars=None)
Project signals through the execution pathway(s) defined by this graph

Parameters

• clamped_vars – list of 2-tuples containing named Nodes that will be clamped with
particular values. Note that this list takes the form: [(node1_name, node_value1),
node2_name, node_value2),. . . ]

• readout_vars – list of 2-tuple strings containing named Nodes and their com-
partments to read signals from. Note that this list takes the form: [(node1_name,
node1_compartment), node2_name, node2_compartment),. . . ]

Returns

readout values - a list of 3-tuples named signals corresponding to the ones in “readout_vars”. Note that
this list takes the form: [(node1_name, node1_compartment, value), node2_name,
node2_compartment, value),. . . ]

clear()

Clears/deletes any persistent signals currently embedded w/in this graph’s Nodes
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CHAPTER

TWENTYTHREE

NGCLEARN

23.1 ngclearn package

23.1.1 Subpackages

ngclearn.density package

Submodules

ngclearn.density.gmm module

class ngclearn.density.gmm.GMM(k, max_iter=5, assume_diag_cov=False, init_kmeans=True)
Bases: object

Implements a custom/pure-TF Gaussian mixture model (GMM) – or mixture of Gaussians, MoG. Adaptation of
parameters is conducted via the Expectation-Maximization (EM) learning algorithm and leverages full covari-
ance matrices in the component multivariate Gaussians.

Note this is a TF wrapper model that houses the sklearn implementation for learning. The sampling process has
been rewritten to utilize GPU matrix computation.

Parameters

• k – the number of components/latent variables within this GMM

• max_iter – the maximum number of EM iterations to fit parameters to data (Default =
5)

• assume_diag_cov – if True, assumes a diagonal covariance for each component (Default
= False)

• init_kmeans – if True, first learn use the K-Means algorithm to initialize the component
Gaussians of this GMM (Default = True)

calc_gaussian_logpdf(X)
Calculates log densities/probabilities of data X under each component given this GMM

Parameters X – the dataset to calculate the log likelihoods from

calc_prob(X)
Computes probabilities p(z|x) of data samples in X under this GMM

Parameters X – the dataset to estimate the probabilities from
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calc_w_log_prob(X)
Calculates weighted log probabilities of data X under each component given this GMM

Parameters X – the dataset to calculate the weighted log probabilities from

e_step(X)

estimate_gaussian_parameters(X, resp)

estimate_log_prob(X)

fit(data)

init_from_ScikitLearn(gmm)

Creates a GMM from a pre-trained Scikit-Learn model – conversion sets things up for a row-major form
of sampling, i.e., s ~ mu_k + eps * (L_k^T) where k is the sampled component index

Parameters gmm – the pre-trained GMM (from scikit-learn) to load in

m_step(X, log_resp)

predict(X)
Chooses which component samples in X are likely to belong to given p(z|x)

Parameters X – the input data to compute p(z|x) from

sample(n_s, mode_i=- 1, samples_modes_evenly=False)
(Efficiently) Draw samples from the current underlying GMM model

Parameters

• n_s – the number of samples to draw from this GMM

• mode_i – if >= 0, will only draw samples from a specific component of this GMM
(Default = -1), ignoring the Categorical prior over latent variables/components

• samples_modes_evenly – if True, will ignore the Categorical prior over latent vari-
ables/components and draw an approximately equal number of samples from each
component

update(X)
Performs a single iterative update of parameters (assuming model initialized)

Parameters X – the dataset to fit this GMM to

Module contents

ngclearn.engine package

Subpackages

ngclearn.engine.cables package

Subpackages

ngclearn.engine.cables.rules package
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Submodules

ngclearn.engine.cables.rules.chebb_rule module

class ngclearn.engine.cables.rules.chebb_rule.CHebbRule(name=None)
Bases: ngclearn.engine.cables.rules.rule.UpdateRule

The contrastive, bounded Hebbian update rule. Note that this rule, when used in tandem with spiking nodes and
variable traces, also implements the online spike-timing dependent plasticity (STDP) rule.

Parameters name – the string name of this update rule (Default = None which creates an auto-
name)

calc_update(for_bias=False)
Calculates the adjustment matrix given this rule’s configured internal terms

Parameters for_bias – calculate the adjustment vector (instead of a matrix) for a bias

Returns an adjustment matrix/vector

clone()

set_terms(terms, weights=None)
Sets the terms that drive this update rule

Parameters terms – list of 2-tuples where each 2-tuple is of the form (Node,
string_compartment_name)

ngclearn.engine.cables.rules.hebb_rule module

class ngclearn.engine.cables.rules.hebb_rule.HebbRule(name=None)
Bases: ngclearn.engine.cables.rules.rule.UpdateRule

The Hebbian update rule.

Parameters name – the string name of this update rule (Default = None which creates an auto-
name)

calc_update(for_bias=False)
Calculates the adjustment matrix given this rule’s configured internal terms

Parameters for_bias – calculate the adjustment vector (instead of a matrix) for a bias

Returns an adjustment matrix/vector

clone()

set_terms(terms, weights=None)
Sets the terms that drive this update rule

Parameters terms – list of 2-tuples where each 2-tuple is of the form (Node,
string_compartment_name)
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ngclearn.engine.cables.rules.rule module

class ngclearn.engine.cables.rules.rule.UpdateRule(rule_type, name=None)
Bases: object

Base update rule (class from which other rule types inherit basic properties from)

Parameters

• rule_type – the string concretely denoting this rule’s type

• name – the string name of this update rule (Default = None which creates an auto-name)

calc_update(for_bias=False)
Calculates the adjustment matrix given this rule’s configured internal terms

Parameters for_bias – calculate the adjustment vector (instead of a matrix) for a bias

Returns an adjustment matrix/vector

clone()

point_to_cable(cable, param_name)
Gives this update rule direct access to the source cable it will update (useful for extra statistics often
required by certain local synaptic adjustment rules).

Parameters

• cable – the cable to point to

• param_name – synaptic parameters w/in this cable to point to

set_terms(terms, weights=None)
Sets the terms that drive this update rule

Parameters terms – list of 2-tuples where each 2-tuple is of the form (Node,
string_compartment_name)

Module contents

Submodules

ngclearn.engine.cables.cable module

class ngclearn.engine.cables.cable.Cable(cable_type, inp, out, name=None, seed=69)
Bases: object

Base cable element (class from which other cable types inherit basic properties from)

Parameters

• cable_type – the string concretely denoting this cable’s type

• inp – 2-Tuple defining the nodal points that this cable will connect. The value types inside
each slot of the tuple are specified below:

input_node (Tuple[0]) the source/input Node object that this cable will carry
signal information from

input_compartment (Tuple[1]) the compartment within the source/input Node
that signals will extracted and transmitted from
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• out – 2-Tuple defining the nodal points that this cable will connect. The value types inside
each slot of the tuple are specified below:

input_node (Tuple[0]) the destination/output Node object that this cable will
carry signal information to

input_compartment (Tuple[1]) the compartment within the destination/output
Node that signals transmitted and deposited into

• name – the string name of this cable (Default = None which creates an auto-name)

• seed – integer seed to control determinism of any underlying synapses associated with
this cable

apply_constraints()

Apply any constraints to the learnable parameters contained within this cable.

calc_update()

Calculates the updates to the internal synapses that compose this cable given this cable’s pre-configured
synaptic update rule.

Parameters clip_kernel – radius of Gaussian ball to constrain computed update matrices
by (i.e., clipping by Frobenius norm)

compile()

Executes the “compile()” routine for this cable. Sub-class cables can extend this in case they contain other
elements that must be configured properly for global simulation usage.

Returns a dictionary containing post-compilation check information about this cable

get_params(only_learnable=False)
Extract all matrix/vector parameters internal to this cable.

Parameters only_learnable – if True, only extracts the learnable matrix/vector parameters
internal to this cable

Returns a list of matrix/vector parameters associated with this particular cable

propagate()

Internal transmission function that computes the correct transformation of a source node to a destination
node

Returns the resultant transformed signal (transformation f information from “node”)

set_constraint(constraint_kernel)

set_decay(decay_kernel)

set_update_rule(preact=None, postact=None, update_rule=None, gamma=1.0, use_mod_factor=False,
param=None, decay_kernel=None)

Sets the synaptic adjustment rule for this cable (currently a 2-factor local synaptic Hebbian update rule).

Parameters

• preact – 2-Tuple defining the pre-activity/source node of which the first factor the
synaptic update rule will be extracted from. The value types inside each slot of the
tuple are specified below:

preact_node (Tuple[0]) the physical node that offers a pre-activity signal for the
first factor of the synaptic/cable update

preact_compartment (Tuple[1]) the component in the preact_node to extract
the necessary signal to compute the first factor the synaptic/cable update
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• postact – 2-Tuple defining the post-activity/source node of which the second factor
the synaptic update rule will be extracted from. The value types inside each slot of the
tuple are specified below:

postact_node (Tuple[0]) the physical node that offers a post-activity signal for
the second factor of the synaptic/cable update

postact_compartment (Tuple[1]) the component in the postact_node to extract
the necessary signal to compute the second factor the synaptic/cable update

• update_rule – a specific update rule to use with the parameters of this cable

• gamma – scaling factor for the synaptic update

• use_mod_factor – if True, triggers the modulatory matrix weighting factor to be
applied to the resultant synaptic update

Note This is un-tested/not fully integrated

• param – a list of strings, each containing named parameters that are to be learned w/in
this cable

• decay_kernel – 2-Tuple defining the type of weight decay to be applied to the
synapses. The value types inside each slot of the tuple are specified below:

decay_type (Tuple[0]) string indicating which type of weight decay to use, “l2”
will trigger L2-penalty decay, while “l1” will trigger L1-penalty decay

decay_coefficient (Tuple[1]) scalar/float to control magnitude of decay applied
to computed local updates

ngclearn.engine.cables.dcable module

class ngclearn.engine.cables.dcable.DCable(inp, out, init_kernels=None, shared_param_path=None,
clip_kernel=None, constraint_kernel=None, seed=69,
name=None)

Bases: ngclearn.engine.cables.cable.Cable

A dense cable that transforms signals that travel across via a bundle of synapses. (In other words, a linear
projection followed by an optional base-rate/bias shift.)

Note: a dense cable only contains two possible learnable parameters, “A” and “b” each with only two terms for
their local Hebbian updates.

Parameters

• inp – 2-Tuple defining the nodal points that this cable will connect. The value types inside
each slot of the tuple are specified below:

input_node (Tuple[0]) the source/input Node object that this cable will carry
signal information from

input_compartment (Tuple[1]) the compartment within the source/input Node
that signals will extracted and transmitted from

• out – 2-Tuple defining the nodal points that this cable will connect. The value types inside
each slot of the tuple are specified below:

input_node (Tuple[0]) the destination/output Node object that this cable will
carry signal information to
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input_compartment (Tuple[1]) the compartment within the destination/output
Node that signals transmitted and deposited into

• w_kernel – an N-Tuple defining type of scheme to randomly initialize weights.

scheme (Tuple[0]) triggers the type of initalization scheme, for example, “gaus-
sian” will apply an elementwise Gaussian initialization. (See the documen-
tation for init_weights() in ngclearn.utils.transform_utils for details on all the
types of initializations and their string codes that can be used.)

scheme_arg1 (Tuple[1]) first argument to control the initialization (for many
schemes, setting this value to 1.0 or even omitting it is acceptable given
that this parameter is ignored, for example, in “unif_scale”, the second ar-
gument would be ignored.) (See the documentation for init_weights() in ng-
clearn.utils.transform_utils for details on all the types of initializations and
their extra arguments.)

scheme_arg2 (Tuple[2]) second argument to control the initialization – this is
generally only necessary to set in the case of lateral competition initialization
schemes, such as in the case of “lkwta” which requires a 3-Tuple specified
as follows: (“lkwta”,alpha_scale,beta_scale) where alpha_scale controls the
strength of self-excitation and beta_scale controls the strength of the cross-unit
inhibition.

• b_kernel – 2-Tuple defining type of scheme to randomly initialize weights.

scheme (Tuple[0]) triggers the type of initalization scheme, for example, “gaus-
sian” will apply an elementwise Gaussian initialization. (See the documen-
tation for init_weights() in ngclearn.utils.transform_utils for details on all the
types of initializations and their string codes that can be used.)

scheme_arg1 (Tuple[1]) first argument to control the initialization (for many
schemes, setting this value to 1.0 or even omitting it is acceptable given
that this parameter is ignored, for example, in “unif_scale”, the second ar-
gument would be ignored.) (See the documentation for init_weights() in ng-
clearn.utils.transform_utils for details on all the types of initializations and
their extra arguments.)

• shared_param_path –

• clip_kernel – 3-Tuple defining type of clipping to apply to calculated synaptic adjust-
ments.

clip_type (Tuple[0]) type of clipping constraint to apply. If “hard_clip” is
set, then a hard-clipping routine is applied (ignoring “clip_axis”) while
“norm_clip” clips by checking if the norm exceeds “clip_value” along
“clip_axis”. Note that “hard_clip” will also be applied to biases (while
“clip_norm” is not).

clip_value (Tuple[1]) the magnitude of the worse-case bounds of the clip to ap-
ply/enforce.

clip_axis (Tuple[2]) the axis along which the clipping is to be applied (to each
matrix).

Note specifying None will mean no clipping is applied to this cable’s calculated
updates

• constraint_kernel – Dict defining the constraint type to be applied to the learnable
parameters of this cable. The expected keys and corresponding value types are specified
below:
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’clip_type’ type of clipping constraint to be applied to learnable parame-
ters/synapses. If “norm_clip” is specified, then norm-clipping will be applied
(with a check if the norm exceeds “clip_mag”), and if “forced_norm_clip” then
norm-clipping will be applied regardless each time apply_constraint() is called.

’clip_mag’ the magnitude of the worse-case bounds of the clip to apply/enforce.

’clip_axis’ the axis along which the clipping is to be applied (to each matrix).

Note specifying None will mean no constraints are applied to this cable’s param-
eters

• name – the string name of this cable (Default = None which creates an auto-name)

• seed – integer seed to control determinism of any underlying synapses associated with
this cable

apply_constraints()

Apply any constraints to the learnable parameters contained within
this cable. This function will execute any of the following
pre-configured constraints:
1) project weights to adhere to vector norm constraints
2) apply weight decay (to non-bias synaptic matrices)

calc_update()

Calculates the updates to the internal synapses that compose this cable given this cable’s pre-configured
synaptic update rule.

Parameters clip_kernel – radius of Gaussian ball to constrain computed update matrices
by (i.e., clipping by Frobenius norm)

compile()

Executes the “compile()” routine for this cable.

Returns a dictionary containing post-compilation check information about this cable

get_params(only_learnable=False)
Extract all matrix/vector parameters internal to this cable.

Parameters only_learnable – if True, only extracts the learnable matrix/vector parameters
internal to this cable

Returns a list of matrix/vector parameters associated with this particular cable

propagate()

Internal transmission function that computes the correct transformation of a source node to a destination
node

Returns the resultant transformed signal (transformation f information from “node”)

set_update_rule(preact=None, postact=None, update_rule=None, gamma=1.0, use_mod_factor=False,
param=None, decay_kernel=None)

Sets the synaptic adjustment rule for this cable (currently a 2-factor local synaptic Hebbian update rule).

Parameters

• preact – 2-Tuple defining the pre-activity/source node of which the first factor the
synaptic update rule will be extracted from. The value types inside each slot of the
tuple are specified below:
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preact_node (Tuple[0]) the physical node that offers a pre-activity signal for the
first factor of the synaptic/cable update

preact_compartment (Tuple[1]) the component in the preact_node to extract
the necessary signal to compute the first factor the synaptic/cable update

• postact – 2-Tuple defining the post-activity/source node of which the second factor
the synaptic update rule will be extracted from. The value types inside each slot of the
tuple are specified below:

postact_node (Tuple[0]) the physical node that offers a post-activity signal for
the second factor of the synaptic/cable update

postact_compartment (Tuple[1]) the component in the postact_node to extract
the necessary signal to compute the second factor the synaptic/cable update

• update_rule – a specific update rule to use with the parameters of this cable

• gamma – scaling factor for the synaptic update

• use_mod_factor – if True, triggers the modulatory matrix weighting factor to be
applied to the resultant synaptic update

Note This is un-tested/not fully integrated

• param – a list of strings, each containing named parameters that are to be learned w/in
this cable

• decay_kernel – 2-Tuple defining the type of weight decay to be applied to the
synapses. The value types inside each slot of the tuple are specified below:

decay_type (Tuple[0]) string indicating which type of weight decay to use, “l2”
will trigger L2-penalty decay, while “l1” will trigger L1-penalty decay

decay_coefficient (Tuple[1]) scalar/float to control magnitude of decay applied
to computed local updates

ngclearn.engine.cables.scable module

class ngclearn.engine.cables.scable.SCable(inp, out, coeff=1.0, name=None, seed=69)
Bases: ngclearn.engine.cables.cable.Cable

A simple cable that, at most, applies a scalar amplification of signals that travel across it. (Otherwise, this cable
works like an identity carry-over.)

Parameters

• inp – 2-Tuple defining the nodal points that this cable will connect. The value types inside
each slot of the tuple are specified below:

input_node (Tuple[0]) the source/input Node object that this cable will carry
signal information from

input_compartment (Tuple[1]) the compartment within the source/input Node
that signals will extracted and transmitted from

• out – 2-Tuple defining the nodal points that this cable will connect. The value types inside
each slot of the tuple are specified below:

input_node (Tuple[0]) the destination/output Node object that this cable will
carry signal information to
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input_compartment (Tuple[1]) the compartment within the destination/output
Node that signals transmitted and deposited into

• coeff – a scalar float to control any signal scaling associated with this cable

• name – the string name of this cable (Default = None which creates an auto-name)

• seed – integer seed to control determinism of any underlying synapses associated with
this cable

compile()

Executes the “compile()” routine for this node. Sub-class nodes can extend this in case they contain other
elements besides compartments that must be configured properly for global simulation usage.

Returns a dictionary containing post-compilation check information about this cable

propagate()

Internal transmission function that computes the correct transformation of a source node to a destination
node

Returns the resultant transformed signal (transformation f information from “node”)

Module contents

ngclearn.engine.nodes package

Submodules

ngclearn.engine.nodes.enode module

class ngclearn.engine.nodes.enode.ENode(name, dim, error_type='mse', act_fx='identity', batch_size=1,
precis_kernel=None, constraint_kernel=None, ex_scale=1.0)

Bases: ngclearn.engine.nodes.node.Node

Implements a (rate-coded) error node simplified to its fixed-point form:
e = target - mu // in the case of squared error (Gaussian error units)
e = signum(target - mu) // in the case of absolute error (Laplace error units)

where:
target - a desired target activity value (target = pred_targ)
mu - an external prediction signal of the target activity value (mu = pred_mu)

Compartments:
* pred_mu - prediction signals (deposited signals summed)
* pred_targ - target signals (deposited signals summed)
* z - the error neural activities, set as z = e
* phi(z) - the post-activation of the error activities in z
* L - the local loss represented by the error activities
* avg_scalar - multiplies L and z by (1/avg_scalar)

Parameters
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• name – the name/label of this node

• dim – number of neurons this node will contain/model

• error_type – type of distance/error measured by this error node. Setting this to “mse”
will set up squared-error neuronal units (derived from L = 0.5 * ( Sum_j (target - mu)^2_j
)), and “mae” will set up mean absolute error neuronal units (derived from L = Sum_j
|target - mu| ).

• act_fx – activation function – phi(v) – to apply to error activities (Default = “identity”)

• batch_size – batch-size this node should assume (for use with static graph optimization)

• precis_kernel – 2-Tuple defining the initialization of the precision weighting synapses
that will modulate the error neural activities. For example, an argument could be: (“uni-
form”, 0.01) The value types inside each slot of the tuple are specified below:

init_scheme (Tuple[0]) initialization scheme, e.g., “uniform”, “gaussian”.

init_scale (Tuple[1]) scalar factor controlling the scale/magnitude of initializa-
tion distribution, e.g., 0.01.

Note specifying None will result in precision weighting being applied to the error
neurons. Understand that care should be taken w/ respect to this particular
argument as precision synapses involve an approximate inversion throughout
simulation steps

• constraint_kernel – Dict defining the constraint type to be applied to the learnable
parameters of this node. The expected keys and corresponding value types are specified
below:

’clip_type’ type of clipping constraint to be applied to learnable parame-
ters/synapses. If “norm_clip” is specified, then norm-clipping will be applied
(with a check if the norm exceeds “clip_mag”), and if “forced_norm_clip” then
norm-clipping will be applied regardless each time apply_constraint() is called.

’clip_mag’ the magnitude of the worse-case bounds of the clip to apply/enforce.

’clip_axis’ the axis along which the clipping is to be applied (to each matrix).

Note specifying None will mean no constraints are applied to this node’s param-
eters

• ex_scale – a scale factor to amplify error neuron signals (Default = 1)

apply_constraints()

Apply any constraints to the learnable parameters contained within
this cable. This function will execute any of the following
pre-configured constraints:
1) compute new precision matrices
2) project synapses to adhere to any embedded norm constraints

calc_update(update_radius=- 1.0)
Calculates the updates to local internal synaptic parameters related to this specific node given current
relevant values (such as node-level precision matrices).

Parameters update_radius – radius of Gaussian ball to constrain computed update matrices
by (i.e., clipping by Frobenius norm)
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compile()

Executes the “compile()” routine for this node. Sub-class nodes can extend this in case they contain other
elements besides compartments that must be configured properly for global simulation usage.

Returns a dictionary containing post-compilation check information about this cable

compute_precision(rebuild_cov=True)
Co-function that pre-computes the precision matrices for this NGC node. NGC uses the Cholesky-
decomposition form of precision (Sigma)^{-1}

Parameters rebuild_cov – rebuild the underlying covariance matrix after re-computing pre-
cision (Default = True)

set_constraint(constraint_kernel)

step(injection_table=None, skip_core_calc=False)
Executes this nodes internal integration/calculation for one discrete step in time, i.e., runs simulation of
this node for one time step.

Parameters

• injection_table –

• skip_core_calc – skips the core components of this node’s calculation (Default =
False)

ngclearn.engine.nodes.fnode module

class ngclearn.engine.nodes.fnode.FNode(name, dim, act_fx='identity', batch_size=1)
Bases: ngclearn.engine.nodes.node.Node

Implements a feedforward (stateless) transmission node:
z = dz

where:
dz - aggregated input signals from other nodes/locations

Compartments:
* dz - incoming pressures/signals (deposited signals summed)
* z - the state values/neural activities, set as: z = dz
* phi(z) - the post-activation of the neural activities

Parameters

• name – the name/label of this node

• dim – number of neurons this node will contain/model

• act_fx – activation function – phi(v) – to apply to neural activities

• batch_size – batch-size this node should assume (for use with static graph optimization)

compile()

Executes the “compile()” routine for this node. Sub-class nodes can extend this in case they contain other
elements besides compartments that must be configured properly for global simulation usage.
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Returns a dictionary containing post-compilation check information about this cable

step(injection_table=None, skip_core_calc=False)
Executes this nodes internal integration/calculation for one discrete step in time, i.e., runs simulation of
this node for one time step.

Parameters

• injection_table –

• skip_core_calc – skips the core components of this node’s calculation (Default =
False)

ngclearn.engine.nodes.node module

class ngclearn.engine.nodes.node.Node(node_type, name, dim)

Bases: object

Base node element (class from which other node types inherit basic properties from)

Parameters

• node_type – the string concretely denoting this node’s type

• name – str name of this node

• dim – number of neurons this node will contain

calc_update(update_radius=- 1.0)
Calculates the updates to local internal synaptic parameters related to this specific node given current
relevant values (such as node-level precision matrices).

Parameters update_radius – radius of Gaussian ball to constrain computed update matrices
by (i.e., clipping by Frobenius norm)

clamp(data, is_persistent=True)
Clamps an externally provided named value (a vector/matrix) to the desired compartment within this node.

Parameters

• data – 2-Tuple containing a named external signal to clamp

compartment_name (Tuple[0]) the (str) name of the compartment to clamp this
data signal to.

signal (Tuple[1]) the data signal block to clamp to the desired compartment
name

• is_persistent – if True, prevents this node from overriding the clamped data over
time (Default = True)

clear()

Wipes/clears values of each compartment in this node (and sets .is_clamped = False).

compile()

Executes the “compile()” routine for this node. Sub-class nodes can extend this in case they contain other
elements besides compartments that must be configured properly for global simulation usage.

Returns a dictionary containing post-compilation check information about this cable
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deep_store_state()

Performs a deep copy of all compartment statistics.

Returns Dict containing a deep copy of each named compartment of this node

extract(comp_name)
Extracts the data signal value that is currently stored inside of a target compartment

Parameters comp_name – the name of the compartment in this node to extract data from

extract_params()

inject(data)
Injects an externally provided named value (a vector/matrix) to the desired compartment within this node.

Parameters data – 2-Tuple containing a named external signal to clamp

compartment_name (Tuple[0]) the (str) name of the compartment to clamp this
data signal to.

signal (Tuple[1]) the data signal block to clamp to the desired compartment name

set_cold_state(injection_table=None, batch_size=- 1)
Sets each compartment to its cold zero-state of shape (batch_size x D). Note that this fills each vector/matrix
state of each compartment to all zero values.

Parameters

• injection_table –

• batch_size – the axis=0 dimension of each compartment @ its cold zero-state

set_constraint(constraint_kernel)

set_status(status=('static', 1))
Sets the status of this node to be either “static” or “dynamic”.

Note: Making this node “dynamic” in the sense that it can handle mini-batches of samples of arbitrary
length BUT you CANNOT use “use_graph_optim = True” static-graph acceleration used w/in the NGC-
Graph .settle() routine, meaning your simulation run slower than when using acceleration.

Parameters status – 2-tuple where 1st element contains a string status flag and the 2nd ele-
ment contains the (integer) batch_size. If status is set to “dynamic”, the second argument
is arbitrary (setting it to 1 is sufficient), and if status is set to “static” you MUST choose a
fixed batch_size that you will use w.r.t. this node.

step(injection_table=None, skip_core_calc=False)
Executes this nodes internal integration/calculation for one discrete step in time, i.e., runs simulation of
this node for one time step.

Parameters

• injection_table –

• skip_core_calc – skips the core components of this node’s calculation (Default =
False)

wire_to(dest_node, src_comp, dest_comp, cable_kernel=None, mirror_path_kernel=None, name=None,
short_name=None)

A wiring function that connects this node to another external node via a cable (or synaptic bundle)

Parameters
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• dest_node – destination node (a Node object) to wire this node to

• src_comp – name of the compartment inside this node to transmit a signal from (to
destination node)

• dest_comp – name of the compartment inside the destination node to transmit a signal
to

• cable_kernel – Dict defining how to initialize the cable that will connect this node
to the destination node. The expected keys and corresponding value types are specified
below:

’type’ type of cable to be created. If “dense” is specified, a DCable (dense ca-
ble/bundle/matrix of synapses) will be used to transmit/transform information
along.

’init_kernels’ a Dict specifying how parameters w/in the learnable parts of the
cable are to randomly initialized

’seed’ integer seed to deterministically control initialization of synapses in a
DCable

Note either cable_kernel, mirror_path_kernel MUST be set to something that is
not None

• mirror_path_kernel – 2-Tuple that allows a currently existing cable to be re-used
as a transformation. The value types inside each slot of the tuple are specified below:

cable_to_reuse (Tuple[0]) target cable (usually an existing DCable object) to
shallow copy and mirror

mirror_type (Tuple[1]) how should the cable be mirrored? If “symm_tied” is
specified, then the transpose of this cable will be used to transmit information
from this node to a destination node, if “anti_symm_tied” is specified, the neg-
ative transpose of this cable will be used, and if “tied” is specified, then this
cable will be used exactly in the same way it was used in its source cable.

Note either cable_kernel, mirror_path_kernel MUST be set to something that is
not None

• name – the string name to be assigned to the generated cable (Default = None)

Note setting this to None will trigger the created cable to auto-name itself

ngclearn.engine.nodes.snode module

class ngclearn.engine.nodes.snode.SNode(name, dim, beta=1.0, leak=0.0, zeta=1.0, act_fx='identity',
batch_size=1, integrate_kernel=None, prior_kernel=None,
threshold_kernel=None, trace_kernel=None,
samp_fx='identity')

Bases: ngclearn.engine.nodes.node.Node

Implements a (rate-coded) state node that follows NGC settling dynamics according to:
d.z/d.t = -z * leak + dz + prior(z), where dz = dz_td + dz_bu * phi’(z)

where:
dz - aggregated input signals from other nodes/locations
leak - controls strength of leak variable/decay
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prior(z) - distributional prior placed over z (such as a kurtotic prior)

Note that the above is used to adjust neural activity values via an integator inside a node. For example, if the
standard/default Euler integrator is used then the neurons inside this node are adjusted per step as follows:

z <- z * zeta + d.z/d.t * beta
where:

beta - strength of update to node state z
zeta - controls the strength of recurrent carry-over, if set to 0 no carry-over is used (stateless)

Compartments:
* dz_td - the top-down pressure compartment (deposited signals summed)
* dz_bu - the bottom-up pressure compartment, potentially weighted by phi’(x)) (deposited signals
summed)
* z - the state neural activities
* phi(z) - the post-activation of the state activities
* S(z) - the sampled state of phi(z) (Default = identity or f(phi(z)) = phi(z))
* mask - a binary mask to be applied to the neural activities

Parameters

• name – the name/label of this node

• dim – number of neurons this node will contain/model

• beta – strength of update to adjust neurons at each simulation step (Default = 1)

• leak – strength of the leak applied to each neuron (Default = 0)

• zeta – effect of recurrent/stateful carry-over (Defaul = 1)

• act_fx – activation function – phi(v) – to apply to neural activities

Note if using either “kwta” or “bkwta”, please input how many winners should
win the competiton, i.e., use “kwta(N)” or “bkwta(N)” where N is an integer
> 0.

• batch_size – batch-size this node should assume (for use with static graph optimization)

• integrate_kernel – Dict defining the neural state integration process type. The ex-
pected keys and corresponding value types are specified below:

’integrate_type’ type integration method to apply to neural activity over time. If
“euler” is specified, Euler integration will be used (future ngc-learn versions
will support “midpoint”/other methods).

’use_dfx’ a boolean that decides if phi’(v) (activation derivative) is used in the
integration process/update.

Note specifying None will automatically set this node to use Euler integration
w/ use_dfx=False

• prior_kernel – Dict defining the type of prior function to apply over neural activities.
The expected keys and corresponding value types are specified below:

’prior_type’ type of (centered) distribution to use as a prior over neural activities.
If “laplace” is specified, a Laplacian distribution is used, if “cauchy” is speci-
fied, a Cauchy distribution will be used, if “gaussian” is specified, a Gaussian
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distribution will be used, and if “exp” is specified, the exponential distribution
will be used.

’lambda’ the scale factor controlling the strength of the prior applied to neural
activities.

Note specifying None will result in no prior distribution being applied

• threshold_kernel – Dict defining the type of threshold function to apply over neural
activities. The expected keys and corresponding value types are specified below:

’threshold_type’ type of (centered) distribution to use as a prior over neural ac-
tivities. If “soft_threshold” is specified, a soft thresholding function is used,
and if “cauchy_threshold” is specified, a cauchy thresholding function is used,

’thr_lambda’ the scale factor controlling the strength of the threshold applied to
neural activities.

Note specifying None will result in no threshold function being applied

• trace_kernel – <unused> (Default = None)

• samp_fx – the sampling/stochastic activation function – S(v) – to apply to neural activities
(Default = identity)

compile()

Executes the “compile()” routine for this node. Sub-class nodes can extend this in case they contain other
elements besides compartments that must be configured properly for global simulation usage.

Returns a dictionary containing post-compilation check information about this cable

step(injection_table=None, skip_core_calc=False)
Executes this nodes internal integration/calculation for one discrete step in time, i.e., runs simulation of
this node for one time step.

Parameters

• injection_table –

• skip_core_calc – skips the core components of this node’s calculation (Default =
False)

ngclearn.engine.nodes.spnode_lif module

class ngclearn.engine.nodes.spnode_lif.SpNode_LIF(name, dim, batch_size=1, integrate_kernel=None,
spike_kernel=None, trace_kernel=None)

Bases: ngclearn.engine.nodes.node.Node

Implements a leaky-integrate and fire (LIF) spiking state node that follows NGC settling dynamics
according to:

Jz = dz OR d.Jz/d.t = (-Jz + dz) * (dt/tau_curr) IF zeta > 0 // current
d.Vz/d.t = (-Vz + Jz * R) * (dt/tau_mem) // voltage
spike(t) = spike_response_model(Jz(t), Vz(t), ref(t). . . ) // spikes computed according to SRM
trace(t) = (trace(t-1) * alpha) * (1 - Sz(t)) + Sz(t) // variable trace filter

where:
Jz - current value of the electrical current input to the spiking neurons w/in this node
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Vz - current value of the membrane potential of the spiking neurons w/in this node
Sz - the spike signal reading(s) of the spiking neurons w/in this node
dz - aggregated input signals from other nodes/locations to drive current Jz
ref - the current value of the refractory variables (accumulates with time and forces neurons to rest)
alpha - variable trace’s interpolation constant (dt/tau <– input by user)
tau_mem - membrane potential time constant (R_m * C_m - resistance times capacitance)
tau_curr - electrical current time constant strength
dt - the integration time constant d.t
R - neural membrane resistance

Note that the above is used to adjust neural electrical current values via an integator inside a node. For example,
if the standard/default Euler integrator is used then the neurons inside this node are adjusted per step as follows:

Jz <- Jz + d.Jz/d.t // <– only if zeta > 0
Vz <- Vz + d.Vz/d.t
ref <- ref + d.t (resets to 0 after 1 millisecond)

Compartments:
* dz_td - the top-down pressure compartment (deposited signals summed)
* dz_bu - the bottom-up pressure compartment, potentially weighted by phi’(x)) (deposited signals
summed)
* Jz - the neural electrical current values
* Vz - the neural membrane potential values
* Sz - the current spike values (binary vector signal) at time t
* Trace_z - filtered trace values of the spike values (real-valued vector)
* ref - the refractory variables (an accumulator)
* mask - a binary mask to be applied to the neural activities

Constants:
* V_thr -
* dt - the integration time constant (milliseconds)
* R - the neural membrane resistance (mega Ohms)
* C - the neural membrane capacitance (microfarads)
* tau_m - the membrane potential time constant (tau_m = R * C)
* tau_c - the electrial current time constant (if zeta > 0)
* trace_alpha - the trace variable’s interpolation constant
* ref_T - the length of the absolute refractory period (milliseconds)

Parameters

• name – the name/label of this node

• dim – number of neurons this node will contain/model

• batch_size – batch-size this node should assume (for use with static graph optimization)

• integrate_kernel – Dict defining the neural state integration process type. The ex-
pected keys and corresponding value types are specified below:
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’integrate_type’ type integration method to apply to neural activity over time. If
“euler” is specified, Euler integration will be used (future ngc-learn versions
will support “midpoint”/other methods).

’use_dfx’ <UNUSED>

’dt’ type integration time constant for the spiking neurons

Note specifying None will automatically set this node to use Euler integration
with dt = 0.25 ms

• spike_kernel – Dict defining the properties of the spiking process. The expected keys
and corresponding value types are specified below:

’V_thr’ the (constant) voltage threshold a neuron must cross to spike

’zeta’ a trigger variable - if > 0, electrical current will be integrated over
as well

’tau_mem’ the membrane potential time constant

’tau_curr’ the electrical current time constant (only used if zeta > 0, oth-
erwise ignored)

• trace_kernel – Dict defining the signal tracing process type. The expected keys and
corresponding value types are specified below:

’dt’ type integration time constant for the trace

’tau’ the filter time constant for the trace

Note specifying None will automatically set this node to not use variable tracing

compile()

Executes the “compile()” routine for this node. Sub-class nodes can extend this in case they contain other
elements besides compartments that must be configured properly for global simulation usage.

Returns a dictionary containing post-compilation check information about this cable

step(injection_table=None, skip_core_calc=False)
Executes this nodes internal integration/calculation for one discrete step in time, i.e., runs simulation of
this node for one time step.

Parameters

• injection_table –

• skip_core_calc – skips the core components of this node’s calculation (Default
= False)

ngclearn.engine.nodes.spnode_enc module

class ngclearn.engine.nodes.spnode_enc.SpNode_Enc(name, dim, gain=1.0, batch_size=1,
trace_kernel=None)

Bases: ngclearn.engine.nodes.node.Node

Implements a simple spiking state node that converts its real-valued input
vector into an on-the-fly generated Poisson spike train. To control the
firing frequency of the spiking neurons within this model, modify the
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gain parameter (range [0,1]) – for example, on pixel data normalized
to the range of [0,1], setting the gain to 0.25 will result in a firing
frequency of approximately 63.75 Hertz (Hz). Note that for real-valued data
which should be normalized to the range of [0,1], the actual values of each
dimension will be used to dictate specific spiking rates (each dimension
spikes in proportion to its feature value/probability).

Compartments:
* z - the real-valued input variable to convert to spikes (should be clamped)
* Sz - the current spike values (binary vector signal) at time t
* Trace_z - filtered trace values of the spike values (real-valued vector)
* mask - a binary mask to be applied to the neural activities

Parameters

• name – the name/label of this node

• dim – number of neurons this node will contain/model

• leak – strength of the conductance leak applied to each neuron’s current Jz (Default =
0)

• batch_size – batch-size this node should assume (for use with static graph optimiza-
tion)

• trace_kernel – Dict defining the signal tracing process type. The expected keys and
corresponding value types are specified below:

’dt’ type integration time constant for the trace

’tau’ the filter time constant for the trace

Note specifying None will automatically set this node to not use variable trac-
ing

compile()

Executes the “compile()” routine for this node. Sub-class nodes can extend this in case they contain other
elements besides compartments that must be configured properly for global simulation usage.

Returns a dictionary containing post-compilation check information about this cable

step(injection_table=None, skip_core_calc=False)
Executes this nodes internal integration/calculation for one discrete step in time, i.e., runs simulation of
this node for one time step.

Parameters

• injection_table –

• skip_core_calc – skips the core components of this node’s calculation (Default
= False)
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ngclearn.engine.nodes.fnode_ba module

class ngclearn.engine.nodes.fnode_ba.FNode_BA(name, dim, act_fx='identity', batch_size=1)
Bases: ngclearn.engine.nodes.node.Node

This is a “teaching” forward node - this node was particularly designed to
generate a learning signal for models that are to learn via a broadcast
(feedback) alignment approach. (This is a convenience class to support BA.)

Implements a feedforward teaching (stateless) transmission node:
z = (dz) * [(Jz > 0) * sech^2(Jz * c2)] and z = dz if c2 <= 0

where:
dz - aggregated input signals from other nodes/locations (typically error nodes)
Jz - input current signal
c2 - a constant value tuned to the sech^2(x) function (this is for a spiking neurons)

note that setting c2 to <= 0, then a non-spiking teaching forward node signal
is created (note if c2 = 0, then this node does not use its Jz compartment)

Compartments:
* dz - incoming pressures/signals (deposited signals summed)
* Jz - input current signal to use to trigger spiking BA-learning
* z - the state values/neural activities, set as: z = dz
* phi(z) - the post-activation of the neural activities

Parameters

• name – the name/label of this node

• dim – number of neurons this node will contain/model

• act_fx – activation function – phi(v) – to apply to neural activities

• batch_size – batch-size this node should assume (for use with static graph optimiza-
tion)

compile()

Executes the “compile()” routine for this node. Sub-class nodes can extend this in case they contain other
elements besides compartments that must be configured properly for global simulation usage.

Returns a dictionary containing post-compilation check information about this cable

step(injection_table=None, skip_core_calc=False)
Executes this nodes internal integration/calculation for one discrete step in time, i.e., runs simulation of
this node for one time step.

Parameters

• injection_table –

• skip_core_calc – skips the core components of this node’s calculation (Default
= False)
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Module contents

Submodules

ngclearn.engine.ngc_graph module

class ngclearn.engine.ngc_graph.NGCGraph(K=5, name='ncn', batch_size=1)
Bases: object

Implements the full model structure/graph for an NGC system composed of nodes and cables. Note that when
instantiating this object, it is important to call .compile(), like so:

graph = NGCGraph(. . . )
info = graph.compile()

Parameters

• K – number of iterative inference/settling steps to simulate

• name – (optional) the name of this projection graph (Default=”ncn”)

• batch_size – fixed batch-size that the underlying compiled static graph system should
assume (Note that you can set this also as an argument to .compile() )

Note if “use_graph_optim” is set to False, then this argument is not meaning-
ful as the system will work with variable-length batches

apply_constraints()

Apply any constraints to the signals embedded in this graph. This function will execute any of the
following pre-configured constraints:
1) compute new precision matrices (if applicable)
2) project weights to adhere to vector norm constraints

calc_updates(debug_map=None)
Calculates the updates to synaptic weight matrices along each learnable wire within this graph via a gen-
eralized Hebbian learning rule.

Parameters debug_map – (Default = None), a Dict to place named signals inside (for de-
bugging)

clamp(clamp_targets)
Clamps an externally provided named value (a vector/matrix) to the desired compartment within a partic-
ular Node of this NGC graph. Note that clamping means this value typically means the value clamped on
will persist (it will NOT evolve according to the injected node’s dynamics over simulation steps, unless
is_persistent = True).

Parameters clamp_targets – 3-Tuple containing a named external signal to clamp

node_name (Tuple[0]) the (str) name of the node to clamp a data signal to.

compartment_name (Tuple[1]) the (str) name of the node’s compartment to
clamp this data signal to.

signal (Tuple[2]) the data signal block to clamp to the desired compartment
name
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clear()

Clears/deletes any persistent signals currently embedded w/in this graph’s Nodes

clone_state()

Clones the entire state of this graph (in terms of signals/tensors) and stores each node’s state dictionary in
global has map

Returns a Dict (hash table) containing string names that map to physical Node objects

compile(use_graph_optim=True, batch_size=- 1)
Executes a global “compile” of this simulation object to ensure internal system coherence. (Only call this
function after the constructor has been set).

Parameters

• use_graph_optim – if True, this simulation will use static graph acceleration (De-
fault = True)

• batch_size – if > 0, will set the integer global batch_size of this simulation object
(otherwise, self.batch_size will be used)

Returns a dictionary containing post-compilation information about this simulation object

evolve(clamped_vars=None, readout_vars=None, init_vars=None, cold_start=True, K=- 1,
masked_vars=None)

Evolves this simulation object for one full K-step episode given input information through clamped and
initialized variables. Note that this is a convenience function written to embody an NGC system’s full
settling process, its local synaptic update calculations, as well as the optimization of and application of
constraints to the synaptic parameters contained within .theta.

Parameters

• clamped_vars – list of 3-tuple strings containing named Nodes, their compart-
ments, and values to (persistently) clamp on. Note that this list takes the form:
[(node1_name, node1_compartment, value), node2_name, node2_compartment,
value),. . . ]

• readout_vars – list of 2-tuple strings containing Nodes and their compart-
ments to read from (in this function’s output). Note that this list takes the form:
[(node1_name, node1_compartment), node2_name, node2_compartment),. . . ]

• init_vars – list of 3-tuple strings containing named Nodes, their compartments,
and values to initialize each Node from. Note that this list takes the form:
[(node1_name, node1_compartment, value), node2_name, node2_compartment,
value),. . . ]

• cold_start – initialize all non-clamped/initialized Nodes (i.e., their compart-
ments contain None) to zero-vector starting points

• K – number simulation steps to run (Default = -1), if <= 0, then self.K will be used
instead

• masked_vars – list of 4-tuple that instruct which
nodes/compartments/masks/clamped values to apply. This list is used to
trigger auto-associative recalls from this NGC graph. Note that this list takes
the form: [(node1_name, node1_compartment, mask, value), node2_name,
node2_compartment, mask, value),. . . ]

Returns

readouts, delta; where “readouts” is a 3-tuple list of the form [(node1_name,
node1_compartment, value), node2_name, node2_compartment, value),. . . ]
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extract(node_name, node_var_name)
Extract a particular signal from a particular node embedded in this graph

Parameters

• node_name – name of the node from the NGC graph to examine

• node_var_name – compartment name w/in Node to extract signal from

Returns an extracted signal (vector/matrix) OR None if either the node does not exist or the
entire system has not been simulated (meaning that no node dynamics have been run
yet)

getNode(node_name)
Extract a particular node from this graph

Parameters node_name – name of the node from the NGC graph to examine

Returns the desired Node (object) or None if the node does not exist

inject(injection_targets)
Injects an externally provided named value (a vector/matrix) to the desired compartment within a particular
Node of this NGC graph. Note that injection means this value does not persist (it will evolve according to
the injected node’s dynamics over simulation steps).

Parameters

• injection_targets – 3-Tuple containing a named external signal to clamp

node_name (Tuple[0]) the (str) name of the node to clamp a data signal
to.

compartment_name (Tuple[1]) the (str) name of the compartment to
clamp this data signal to.

signal (Tuple[2]) the data signal block to clamp to the desired compart-
ment name

• is_persistent – if True, clamped data value will persist throughout simulation
(Default = True)

parse_node_values(node_values)

set_cycle(nodes, param_order=None)
Set an execution cycle in this graph

Parameters nodes – an ordered list of Node(s) to create an execution cycle for

set_learning_order(param_order)
Forces this simulation object to arrange its .theta and delta to follow a particular order.

Parameters param_order – a list of Cables/Nodes which will dictate the strict order in
which parameter updates will be calculated and how they are arranged in .theta (note
that delta and theta will match the same dictated order)

set_optimization(opt_algo)
Sets the internal optimization algorithm used by this simulation object.

Parameters opt_algo – optimization algorithm to be used, e.g., SGD, Adam, etc. (Note:
must be a valid TF2 optimizer.)

set_theta(theta_target)
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set_to_resting_state(batch_size=- 1)

set_to_state(state_map)
Set every state of every node in this graph to the values contained in the global Dict (hash table) “state_map”

Parameters state_map – a Dict (hash table) containing string names that map to physical
Node objects

settle(clamped_vars=None, readout_vars=None, init_vars=None, cold_start=True, K=- 1, debug=False,
masked_vars=None, calc_delta=True)

Execute this NGC graph’s iterative inference using the execution pathway(s) defined at construc-
tion/initialization.

Parameters

• clamped_vars – list of 3-tuple strings containing named Nodes, their compart-
ments, and values to (persistently) clamp on. Note that this list takes the form:
[(node1_name, node1_compartment, value), node2_name, node2_compartment,
value),. . . ]

• readout_vars – list of 2-tuple strings containing Nodes and their compart-
ments to read from (in this function’s output). Note that this list takes the form:
[(node1_name, node1_compartment), node2_name, node2_compartment),. . . ]

• init_vars – list of 3-tuple strings containing named Nodes, their compartments,
and values to initialize each Node from. Note that this list takes the form:
[(node1_name, node1_compartment, value), node2_name, node2_compartment,
value),. . . ]

• cold_start – initialize all non-clamped/initialized Nodes (i.e., their compart-
ments contain None) to zero-vector starting points/resting states

• K – number simulation steps to run (Default = -1), if <= 0, then self.K will be used
instead

• debug – <UNUSED>

• masked_vars – list of 4-tuple that instruct which
nodes/compartments/masks/clamped values to apply. This list is used to
trigger auto-associative recalls from this NGC graph. Note that this list takes
the form: [(node1_name, node1_compartment, mask, value), node2_name,
node2_compartment, mask, value),. . . ]

• calc_delta – compute the list of synaptic updates for each learnable parameter
within .theta? (Default = True)

Returns

readouts, delta; where “readouts” is a 3-tuple list of the form [(node1_name,
node1_compartment, value), node2_name, node2_compartment, value),. . . ], and
“delta” is a list of synaptic adjustment matrices (in the same order as .theta)

step(calc_delta=False)
Online function for simulating exactly one discrete time step of this simulated NGC graph given its exact
current state.

Parameters calc_delta – compute the list of synaptic updates for each learnable parameter
within .theta? (Default = True)

Returns
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readouts, delta; where “readouts” is a 3-tuple list of the form [(node1_name,
node1_compartment, value), node2_name, node2_compartment, value),. . . ], and
“delta” is a list of synaptic adjustment matrices (in the same order as .theta)

ngclearn.engine.proj_graph module

class ngclearn.engine.proj_graph.ProjectionGraph(name='sampler')
Bases: object

Implements a projection graph – useful for conducting ancestral sampling of a directed generative model or
ancestral projection of a clamped graph. Note that when instantiating this object, it is important to call .compile(),
like so:

graph = ProjectionGraph(. . . )
info = graph.compile()

Parameters name – the name of this projection graph

apply_constraints()

Apply any constraints to the signals embedded in this graph. This function will execute any of the
following pre-configured constraints:
1) compute new precision matrices (if applicable)
2) project weights to adhere to vector norm constraints

calc_updates(debug_map=None)
Calculates the updates to synaptic weight matrices along each learnable wire within this NCN operation
graph via a generalized Hebbian learning rule.

Parameters debug_map – (Default = None), a Dict to place named signals inside (for de-
bugging)

clamp(clamp_targets)
Clamps an externally provided named value (a vector/matrix) to the desired compartment within a partic-
ular Node of this projection graph.

Parameters clamp_targets – 3-Tuple containing a named external signal to clamp

node_name (Tuple[0]) the (str) name of the node to clamp a data signal to.

compartment_name (Tuple[1]) the (str) name of the node’s compartment to
clamp this data signal to.

signal (Tuple[2]) the data signal block to clamp to the desired compartment
name

clear()

Clears/deletes any persistent signals currently embedded w/in this graph’s Nodes

compile(batch_size=- 1)
Executes a global “compile” of this simulation object to ensure internal system coherence. (Only call this
function after the constructor has been set).

Parameters batch_size – <UNUSED>

Returns a dictionary containing post-compilation information about this simulation object
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extract(node_name, node_var_name)
Extract a particular signal from a particular node embedded in this graph

Parameters

• node_name – name of the node from the NGC graph to examine

• node_var_name – compartment name w/in Node to extract signal from

Returns an extracted signal (vector/matrix) OR None if node does not exist

getNode(node_name)
Extract a particular node from this graph

Parameters node_name – name of the node from the NGC graph to examine

Returns the desired Node (object)

project(clamped_vars=None, readout_vars=None)
Project signals through the execution pathway(s) defined by this graph

Parameters

• clamped_vars – list of 2-tuples containing named Nodes that will be clamped with
particular values. Note that this list takes the form: [(node1_name, node_value1),
node2_name, node_value2),. . . ]

• readout_vars – list of 2-tuple strings containing named Nodes and their com-
partments to read signals from. Note that this list takes the form: [(node1_name,
node1_compartment), node2_name, node2_compartment),. . . ]

Returns

readout values - a list of 3-tuples named signals corresponding to the ones in “readout_vars”. Note that
this list takes the form: [(node1_name, node1_compartment, value), node2_name,
node2_compartment, value),. . . ]

set_cold_state(batch_size=- 1)

set_cycle(nodes)
Set execution cycle for this graph

Parameters nodes – an ordered list of Node(s) to create an execution cycle for

Module contents

ngclearn.generator package

Subpackages

ngclearn.generator.experimental package

Subpackages

ngclearn.generator.experimental.infimnist package

Submodules
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ngclearn.generator.experimental.infimnist.infimnist module

Module contents

Module contents

ngclearn.generator.static package

Submodules

ngclearn.generator.static.mog module

class ngclearn.generator.static.mog.MoG(x_dim=2, num_comp=1, means=None, covar=None, phi=None,
assume_diag_cov=False, fscale=1.0, seed=69)

Bases: object

Implements a mixture of Gaussians (MoG) stochastic data generating process.
Parameters

• x_dim – the dimensionality of the simulated data/input space

• num_comp – the number of components/latent variables within this GMM

• assume_diag_cov – if True, assumes a diagonal covariance for each component (De-
fault = False)

• means – a list of means, each a (1 x D) vector (in tensor tf.float32 format)

• covar – a list of covariances, each a (D x D) vector (in tensor tf.float32 format)

• assume_diag_cov – if covar is None, forces auto-created covariance matrices to be
strictly diagonal

• fscale – if covar is None, this controls the global scale of each component’s covariance
(Default = 1.0)

• seed – integer seed to control determinism of the underlying data generating process
sample(n_s, mode_idx=- 1)

Draw samples from the current underlying data generating mixture process.

Parameters

• n_s – the number of samples to draw from this GMM

• mode_i – if >= 0, will only draw samples from a selected, specific component of
this process (Default = -1)
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Module contents

ngclearn.generator.temporal package

Submodules

ngclearn.generator.temporal.noisy_sin module

class ngclearn.generator.temporal.noisy_sin.NoisySinusoid(sigma, dt=0.01, x_initial=None)
Bases: object

Implements the noisy sinusoid stochastic (temporal) data generating process. Note that centered Gaussian noise
is used to create the corrupted samples of the underlying sinusoidal process.

Parameters

• sigma – a (1 x D) vector (numpy) that dictates the standard deviation of the process

• dt – the integration time step (Default = 0.01)

• x_initial – the initial value of the process (Default = None, yielding a zero vector
starting point)

reset()

Resets the temporal noise process back to its initial condition/starting point.

sample()

Draws a sample from the current state of this noisy sinusoidal temporal process.

Returns a vector sample of shape (1 x D)

ngclearn.generator.temporal.oh_process module

class ngclearn.generator.temporal.oh_process.OUNoise(mean, std_deviation, theta=0.15, dt=0.01,
x_initial=None)

Bases: object

Implements an Ornstein Uhlenbeck (O-H) stochastic (temporal) data generating process.
Parameters

• mean – a (1 x D) vector (numpy) (mean of the process)

• std_deviation – a (1 x D) vector (numpy) (standard deviation of the process)

• theta – meta-parameter to control the drift term of the process (Default = 0.15)

• dt – the integration time step (Default = 1e-2)

• x_initial – the initial value of the process (Default = None, yielding a zero vector
starting point)

reset()

Resets the temporal noise process back to its initial condition/starting point.

sample()

Draws a sample from the current state of this O-H temporal process.

Returns a vector sample of shape (1 x D)
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Module contents

Module contents

ngclearn.museum package

Submodules

ngclearn.museum.gncn_pdh module

class ngclearn.museum.gncn_pdh.GNCN_PDH(args)
Bases: object

Structure for constructing the model proposed in:

Ororbia, A., and Kifer, D. The neural coding framework for learning generative models. Nature Communications
13, 2064 (2022).

This model, under the NGC computational framework, is referred to as the GNCN-t1-Sigma/Friston, according
to the naming convention in (Ororbia & Kifer 2022).

Historical Note:
(The arXiv paper that preceded the publication above is shown below:)
Ororbia, Alexander, and Daniel Kifer. “The neural coding framework for
learning generative models.” arXiv preprint arXiv:2012.03405 (2020).

Node Name Structure:
z3 -(z3-mu2)-> mu2 ;e2; z2 -(z2-mu1)-> mu1 ;e1; z1 -(z1-mu0-)-> mu0 ;e0; z0
z3 -(z3-mu1)-> mu1; z2 -(z2-mu0)-> mu0
e2 -> e2 * Sigma2; e1 -> e1 * Sigma1 // Precision weighting
z3 -> z3 * Lat3; z2 -> z2 * Lat2; z1 -> z1 * Lat1 // Lateral competition
e2 -(e2-z3)-> z3; e1 -(e1-z2)-> z2; e0 -(e0-z1)-> z1 // Error feedback

Parameters args – a Config dictionary containing necessary meta-parameters for the GNCN-PDH

DEFINITION NOTE:
args should contain values for the following:
* batch_size - the fixed batch-size to be fed into this model
* z_top_dim: # of latent variables in layer z3 (top-most layer)
* z_dim: # of latent variables in layers z1 and z2
* x_dim: # of latent variables in layer z0 or sensory x
* seed: number to control determinism of weight initialization
* wght_sd: standard deviation of Gaussian initialization of weights
* beta: latent state update factor
* leak: strength of the leak variable in the latent states
* K: # of steps to take when conducting iterative inference/settling
* act_fx: activation function for layers z1, z2, and z3
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* out_fx: activation function for layer mu0 (prediction of z0) (Default: sigmoid)
* n_group: number of neurons w/in a competition group for z2 and z2 (sizes of z2 and z1 should be divisible
by this number)
* n_top_group: number of neurons w/in a competition group for z3 (size of z3 should be divisible by this
number)
* alpha_scale: the strength of self-excitation
* beta_scale: the strength of cross-inhibition

calc_updates(avg_update=True, decay_rate=- 1.0)
Calculate adjustments to parameters under this given model and its current internal state values

Returns delta, a list of synaptic matrix updates (that follow order of .theta)

clear()

Clears the states/values of the stateful nodes in this NGC system

print_norms()

Prints the Frobenius norms of each parameter of this system

project(z_sample)
Run projection scheme to get a sample of the underlying directed generative model given the clamped
variable z_sample

Parameters z_sample – the input noise sample to project through the NGC graph

Returns x_sample (sample(s) of the underlying generative model)

set_weights(source, tau=0.005)
Deep copies weight variables of another model (of the same exact type) into this model’s weight vari-
ables/parameters.

Parameters

• source – the source model to extract/transfer params from

• tau – if > 0, the Polyak averaging coefficient (-1 sets to hard deep copy/transfer)

settle(x, calc_update=True)
Run an iterative settling process to find latent states given clamped input and output variables

Parameters

• x – sensory input to reconstruct/predict

• calc_update – if True, computes synaptic updates @ end of settling process (De-
fault = True)

Returns x_hat (predicted x)

update(x, avg_update=True)
Updates synaptic parameters/connections given inputs x and y

Parameters x – a sensory sample or batch of sensory samples
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ngclearn.museum.gncn_t1 module

class ngclearn.museum.gncn_t1.GNCN_t1(args)
Bases: object

Structure for constructing the model proposed in:

Rao, Rajesh PN, and Dana H. Ballard. “Predictive coding in the visual cortex: a functional interpretation of
some extra-classical receptive-field effects.” Nature neuroscience 2.1 (1999): 79-87.

Note this model includes the Laplacian prior to induce some level of sparsity in the latent activities. This model,
under the NGC computational framework, is referred to as the GNCN-t1/Rao, according to the naming convention
in (Ororbia & Kifer 2022).

Node Name Structure:
z3 -(z3-mu2)-> mu2 ;e2; z2 -(z2-mu1)-> mu1 ;e1; z1 -(z1-mu0-)-> mu0 ;e0; z0

Parameters args – a Config dictionary containing necessary meta-parameters for the GNCN-t1

DEFINITION NOTE:
args should contain values for the following:
* batch_size - the fixed batch-size to be fed into this model
* z_top_dim - # of latent variables in layer z3 (top-most layer)
* z_dim - # of latent variables in layers z1 and z2
* x_dim - # of latent variables in layer z0 or sensory x
* seed - number to control determinism of weight initialization
* wght_sd - standard deviation of Gaussian initialization of weights
* beta - latent state update factor
* leak - strength of the leak variable in the latent states
* lmbda - strength of the Laplacian prior applied over latent state activities
* K - # of steps to take when conducting iterative inference/settling
* act_fx - activation function for layers z1, z2, and z3
* out_fx - activation function for layer mu0 (prediction of z0) (Default: sigmoid)

calc_updates(avg_update=True, decay_rate=- 1.0)
Calculate adjustments to parameters under this given model and its current internal state values

Returns delta, a list of synaptic matrix updates (that follow order of .theta)

clear()

Clears the states/values of the stateful nodes in this NGC system

print_norms()

Prints the Frobenius norms of each parameter of this system

project(z_sample)
Run projection scheme to get a sample of the underlying directed generative model given the clamped
variable z_sample

Parameters z_sample – the input noise sample to project through the NGC graph
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Returns x_sample (sample(s) of the underlying generative model)

set_weights(source, tau=0.005)
Deep copies weight variables of another model (of the same exact type) into this model’s weight vari-
ables/parameters.

Parameters

• source – the source model to extract/transfer params from

• tau – if > 0, the Polyak averaging coefficient (-1 sets to hard deep copy/transfer)

settle(x, calc_update=True)
Run an iterative settling process to find latent states given clamped input and output variables

Parameters

• x – sensory input to reconstruct/predict

• calc_update – if True, computes synaptic updates @ end of settling process (De-
fault = True)

Returns x_hat (predicted x)

update(x, avg_update=True)
Updates synaptic parameters/connections given inputs x and y

Parameters x – a sensory sample or batch of sensory samples

ngclearn.museum.gncn_t1_ffm module

class ngclearn.museum.gncn_t1_ffm.GNCN_t1_FFM(args)
Bases: object

Structure for constructing the model proposed in:

Whittington, James CR, and Rafal Bogacz. “An approximation of the error backpropagation algorithm in a
predictive coding network with local hebbian synaptic plasticity.” Neural computation 29.5 (2017): 1229-1262.

This model, under the NGC computational framework, is referred to as the GNCN-t1-FFM, a slightly modified
from of the naming convention in (Ororbia & Kifer 2022, Supplementary Material). “FFM” denotes feedforward
mapping.

Node Name Structure:
z3 -(z3-mu2)-> mu2 ;e2; z2 -(z2-mu1)-> mu1 ;e1; z1 -(z1-mu0-)-> mu0 ;e0; z0

Note that z3 = x and z0 = y, yielding a classifier or regressor

Parameters args – a Config dictionary containing necessary meta-parameters for the GNCN-t1-
FFM

DEFINITION NOTE:
args should contain values for the following:
* batch_size - the fixed batch-size to be fed into this model
* x_dim - # of latent variables in layer z3 or sensory input x
* z_dim - # of latent variables in layers z1 and z2
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* y_dim - # of latent variables in layer z0 or output target y
* seed - number to control determinism of weight initialization
* wght_sd - standard deviation of Gaussian initialization of weights
* beta - latent state update factor
* leak - strength of the leak variable in the latent states
* lmbda - strength of the Laplacian prior applied over latent state activities
* K - # of steps to take when conducting iterative inference/settling
* act_fx - activation function for layers z1, z2
* out_fx - activation function for layer mu0 (prediction of z0 or y) (Default: identity)

calc_updates(avg_update=True, decay_rate=- 1.0)
Calculate adjustments to parameters under this given model and its current internal state values

Returns delta, a list of synaptic matrix updates (that follow order of .theta)

clear()

Clears the states/values of the stateful nodes in this NGC system

predict(x)
Predicts the target (either a probability distribution over labels, i.e., p(y|x), or a vector of regression targets)
for a given x

Parameters z_sample – the input sample to project through the NGC graph

Returns y_sample (sample(s) of the underlying predictive model)

print_norms()

Prints the Frobenius norms of each parameter of this system

project(x_sample)

(Internal function)
Run projection scheme to get a sample of the underlying directed
generative model given the clamped variable z_sample = x

Parameters x_sample – the input sample to project through the NGC graph

Returns y_sample (sample(s) of the underlying predictive model)

set_weights(source, tau=- 1.0)
Deep copies weight variables of another model (of the same exact type) into this model’s weight vari-
ables/parameters.

Parameters

• source – the source model to extract/transfer params from

• tau – if > 0, the Polyak averaging coefficient (-1 sets to hard deep copy/transfer)

settle(x, y, calc_update=True)
Run an iterative settling process to find latent states given clamped input and output variables

Parameters

• x – sensory input to clamp top-most layer (z3) to

• y – target output activity, i.e., label or regression target
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• calc_update – if True, computes synaptic updates @ end of settling process (De-
fault = True)

Returns y_hat (predicted y)

update(x, y, avg_update=True)
Updates synaptic parameters/connections given inputs x and y

Parameters

• x – a sensory sample or batch of sensory samples

• y – a target or batch of targets

ngclearn.museum.gncn_t1_sc module

class ngclearn.museum.gncn_t1_sc.GNCN_t1_SC(args)
Bases: object

Structure for constructing the sparse coding model proposed in:

Olshausen, B., Field, D. Emergence of simple-cell receptive field properties by learning a sparse code for natural
images. Nature 381, 607–609 (1996).

Note this model imposes a factorial (Cauchy) prior to induce sparsity in the latent activities z1 (the latent code-
book). Synapses initialized from a (fan-in) scaled uniform distribution. This model would be named, under the
NGC computational framework naming convention (Ororbia & Kifer 2022), as the GNCN-t1/SC (SC = sparse
coding) or GNCN-t1/Olshausen.

Node Name Structure:
p(z1) ; z1 -(z1-mu0)-> mu0 ;e0; z0
Cauchy prior applied for p(z1)

Note: You can also recover the model learned through ISTA by using, instead of a factorial prior over latents,
a thresholding function such as the “soft_threshold”. (Make sure you set “prior” to “none” in this case.) This
results in the GNCN-t1/SC emulating a system similar to that proposed in:

Daubechies, Ingrid, Michel Defrise, and Christine De Mol. “An iterative thresholding algorithm for linear inverse
problems with a sparsity constraint.” Communications on Pure and Applied Mathematics: A Journal Issued by
the Courant Institute of Mathematical Sciences 57.11 (2004): 1413-1457.

Parameters args – a Config dictionary containing necessary meta-parameters for the GNCN-
t1/SC

DEFINITION NOTE:
args should contain values for the following:
* batch_size - the fixed batch-size to be fed into this model
* z_dim - # of latent variables in layers z1
* x_dim - # of latent variables in layer z0 or sensory x
* seed - number to control determinism of weight initialization
* beta - latent state update factor
* leak - strength of the leak variable in the latent states (Default = 0)
* prior - type of prior to use (Default = “cauchy”)
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* lmbda - strength of the prior applied over latent state activities (only if prior != “none”)
* threshold - type of threshold to use (Default = “none”)
* thr_lmbda - strength of the threshold applied over latent state activities (only if threshold != “none”)
* n_group - must be > 0 if lat_type != None and s.t. (z_dim mod n_group) == 0
* K - # of steps to take when conducting iterative inference/settling
* act_fx - activation function for layers z1 (Default = identity)
* out_fx - activation function for layer mu0 (prediction of z0) (Default: identity)

calc_updates(avg_update=True)
Calculate adjustments to parameters under this given model and its current internal state values

Returns delta, a list of synaptic matrix updates (that follow order of .theta)

clear()

Clears the states/values of the stateful nodes in this NGC system

print_norms()

Prints the Frobenius norms of each parameter of this system

project(z_sample)
Run projection scheme to get a sample of the underlying directed generative model given the clamped
variable z_sample

Parameters z_sample – the input noise sample to project through the NGC graph

Returns x_sample (sample(s) of the underlying generative model)

set_weights(source, tau=0.005)
Deep copies weight variables of another model (of the same exact type) into this model’s weight vari-
ables/parameters.

Parameters

• source – the source model to extract/transfer params from

• tau – if > 0, the Polyak averaging coefficient (-1 sets to hard deep copy/transfer)

settle(x, K=- 1, cold_start=True, calc_update=True)
Run an iterative settling process to find latent states given clamped input and output variables

Parameters

• x – sensory input to reconstruct/predict

• K – number of steps to run iterative settling for

• cold_start – start settling process states from zero (Leave this to True)

• calc_update – if True, computes synaptic updates @ end of settling process (De-
fault = True)

Returns x_hat (predicted x)

update(x, avg_update=True)
Updates synaptic parameters/connections given sensory input

Parameters x – a sensory sample or batch of sensory samples
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ngclearn.museum.gncn_t1_sigma module

class ngclearn.museum.gncn_t1_sigma.GNCN_t1_Sigma(args)
Bases: object

Structure for constructing the model proposed in:

Friston, Karl. “Hierarchical models in the brain.” PLoS Computational Biology 4.11 (2008): e1000211.

Note this model includes a Laplacian prior to induce some level of sparsity in the latent activities. This model,
under the NGC computational framework, is referred to as the GNCN-t1-Sigma/Friston, according to the naming
convention in (Ororbia & Kifer 2022).

Node Name Structure:
z3 -(z3-mu2)-> mu2 ;e2; z2 -(z2-mu1)-> mu1 ;e1; z1 -(z1-mu0-)-> mu0 ;e0; z0
e2 -> e2 * Sigma2; e1 -> e1 * Sigma1 // Precision weighting

Parameters args – a Config dictionary containing necessary meta-parameters for the GNCN-t1-
Sigma

DEFINITION NOTE:
args should contain values for the following:
* batch_size - the fixed batch-size to be fed into this model
* z_top_dim: # of latent variables in layer z3 (top-most layer)
* z_dim: # of latent variables in layers z1 and z2
* x_dim: # of latent variables in layer z0 or sensory x
* seed: number to control determinism of weight initialization
* wght_sd: standard deviation of Gaussian initialization of weights
* beta: latent state update factor
* leak: strength of the leak variable in the latent states
* lmbda: strength of the Laplacian prior applied over latent state activities
* K: # of steps to take when conducting iterative inference/settling
* act_fx: activation function for layers z1, z2, and z3
* out_fx: activation function for layer mu0 (prediction of z0) (Default: sigmoid)

calc_updates(avg_update=True, decay_rate=- 1.0)
Calculate adjustments to parameters under this given model and its current internal state values

Returns delta, a list of synaptic matrix updates (that follow order of .theta)

clear()

Clears the states/values of the stateful nodes in this NGC system

print_norms()

Prints the Frobenius norms of each parameter of this system

project(z_sample)
Run projection scheme to get a sample of the underlying directed generative model given the clamped
variable z_sample

Parameters z_sample – the input noise sample to project through the NGC graph
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Returns x_sample (sample(s) of the underlying generative model)

set_weights(source, tau=0.005)
Deep copies weight variables of another model (of the same exact type) into this model’s weight vari-
ables/parameters.

Parameters

• source – the source model to extract/transfer params from

• tau – if > 0, the Polyak averaging coefficient (-1 sets to hard deep copy/transfer)

settle(x, calc_update=True)
Run an iterative settling process to find latent states given clamped input and output variables

Parameters

• x – sensory input to reconstruct/predict

• calc_update – if True, computes synaptic updates @ end of settling process (De-
fault = True)

Returns x_hat (predicted x)

update(x, avg_update=True)
Updates synaptic parameters/connections given inputs x and y

Parameters x – a sensory sample or batch of sensory samples

ngclearn.museum.harmonium module

class ngclearn.museum.harmonium.Harmonium(args)
Bases: object

Structure for constructing the Harmonium model proposed in:

Hinton, Geoffrey E. “Training products of experts by maximizing contrastive likelihood.” Technical Report,
Gatsby computational neuroscience unit (1999).

Node Name Structure:
z1 -(z1-z0)-> z0
z0 -(z0-z1)-> z1
Note: z1-z0 = (z0-z1)^T (transpose-tied synapses)

Another important reference for designing stable Harmoniums is here:

Hinton, Geoffrey E. “A practical guide to training restricted Boltzmann machines.” Neural networks: Tricks of
the trade. Springer, Berlin, Heidelberg, 2012. 599-619.
Note: if you set the samp_fx to the “identity”, you force the Harmonium to to work as a mean-field Harmo-

nium/Botlzmann machine

Parameters args – a Config dictionary containing necessary meta-parameters for the Harmonium

DEFINITION NOTE:
args should contain values for the following:
* batch_size - the fixed batch-size to be fed into this model
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* z_dim - # of latent variables in layer z1
* x_dim - # of latent variables in layer z0 (or sensory x)
* seed - number to control determinism of weight initialization
* wght_sd - standard deviation of Gaussian initialization of weights
* K - # of steps to take when conducting Contrastive Divergence
* act_fx - activation function for layer z1 (Default: sigmoid)
* out_fx - activation function for layer z0 (prediction of z0) (Default: sigmoid)
* samp_fx - sampling function for layer z1 (Default = bernoulli)

calc_updates(avg_update=True, decay_rate=- 1.0)
Calculate adjustments to parameters under this given model and its current internal state values

Returns delta, a list of synaptic updates (that follow order of pos_phase.theta)

clear()

Clears the states/values of the stateful nodes in this NGC system

print_norms()

Prints the Frobenius norms of each parameter of this system

sample(K, x_sample=None, batch_size=1)
Samples the underlying harmonium to generate a chain of patterns from a block Gibbs sampling process.

Parameters

• K – number of steps to run the Gibbs sampler

• x_sample – inital condition for the sampler (Default = None), if None, this will
generate an initial sample of size (batch_size, z1_dim) where z1_dim is the dimen-
sionality of the latent state.

• batch_size – if x_sample is None, then this dictates how many samples in parallel
to create per step of running the Gibbs sampler

settle(x, calc_update=True)
Run an iterative settling process to find latent states given clamped input and output variables.

Parameters

• x – sensory input to reconstruct/predict

• calc_update – if True, computes synaptic updates @ end of settling process for
both NGC system and inference co-model (Default = True)

Returns x_hat (predicted x)

ngclearn.museum.snn_ba module

class ngclearn.museum.snn_ba.SNN_BA(args)
Bases: object

A spiking neural network (SNN) classifier that adapts its synaptic cables via broadcast alignment. Specifically,
this model is a generalization of the one proposed in:

Samadi, Arash, Timothy P. Lillicrap, and Douglas B. Tweed. “Deep learning with dynamic spiking neurons and
fixed feedback weights.” Neural computation 29.3 (2017): 578-602.
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This model encodes its real-valued inputs as Poisson spike trains with spikes emitted at a rate of approximately
63.75 Hz. The internal nodes and output nodes operate under the leaky integrate-and-fire spike response model
and operate with a relative refractory rate of 1.0 ms. The integration time constant for this model has been set to
0.25 ms.

Node Name Structure:
z2 -(z2-mu1)-> mu1 ; z1 -(z1-mu0-)-> mu0 ;e0; z0
e0 -> d1 and z1 -> d1, where d1 is a teaching signal for z1

Note that z2 = x and z0 = y, yielding a classifier

Parameters args – a Config dictionary containing necessary meta-parameters for the SNN-BA

DEFINITION NOTE:
args should contain values for the following:
* batch_size - the fixed batch-size to be fed into this model
* z_dim - # of latent variables in layers z1
* x_dim - # of latent variables in layer z2 or sensory x
* y_dim - # of variables in layer z0 or target y
* seed - number to control determinism of weight initialization
* wght_sd - standard deviation of Gaussian initialization of weights (optional)
* T - # of time steps to take when conducting iterative settling (if not online)

clear()

Clears the states/values of the stateful nodes in this NGC system

predict(x)
Predicts the target for a given x. Specifically, this function will return spike counts, one per class in y –
taking the argmax of these counts will yield the model’s predicted label.

Parameters z_sample – the input sample to project through the NGC graph

Returns y_sample (spike counts from the underlying predictive model)

settle(x, y=None, calc_update=True)
Run an iterative settling process to find latent states given clamped input and output variables, specifically
simulating the dynamics of the spiking neurons internal to this SNN model. Note that this functions returns
two outputs – the first is a count matrix (each row is a sample in mini-batch) and each column represents the
count for one class in y, and the second is an approximate probability distribution computed as a softmax
over an average across the electrical currents produced at each step of simulation.

Parameters

• x – sensory input to clamp top-most layer (z2) to

• y – target output activity, i.e., label target

• calc_update – if True, computes synaptic updates @ end of settling process (De-
fault = True)

Returns

y_count (spike counts per class in y), y_hat (approximate probability distribution
for y)
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Module contents

ngclearn.utils package

Subpackages

ngclearn.utils.experimental package

Submodules

ngclearn.utils.experimental.viz_graph_utils module

Module contents

Submodules

ngclearn.utils.config module

class ngclearn.utils.config.Config(fname=None)
Bases: object

Simple configuration object to house named arguments for experiments (to be built from a .cfg file on disk).

File format is:
# Comments start with pound symbol
arg_name = arg_value
arg_name = arg_value # side comment that will be stripped off

Parameters fname – source file name to build configuration object from (suffix = .cfg)

getArg(arg_name)
Retrieve argument from current configuration

Parameters arg_name – the string name of the argument to retrieve from this config

Returns the value of the named argument queried

hasArg(arg_name)
Check if argument exists (or if it is known by this config object)

Parameters arg_name – the string name of the argument to check for the existence of

Returns True if this config contains this argument, False otherwise

setArg(arg_name, arg_value)
Sets an argument directly

Parameters

• arg_name – the string name of the argument to set within this config

• arg_value – the value name of the argument to set within this config
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ngclearn.utils.data_utils module

Data functions and utilies.

class ngclearn.utils.data_utils.DataLoader(design_matrices, batch_size, disable_shuffle=False,
ensure_equal_batches=True)

Bases: object

A data loader object, meant to allow sampling w/o replacement of one or more named design matrices. Note
that this object is iterable (and implements an __iter__() method).

Parameters

• design_matrices – list of named data design matrices - [(“name”, matrix), . . . ]

• batch_size – number of samples to place inside a mini-batch

• disable_shuffle – if True, turns off sample shuffling (thus no sampling w/o replace-
ment)

• ensure_equal_batches – if True, ensures sampled batches are equal in size (Default
= True). Note that this means the very last batch, if it’s not the same size as the rest,
will reuse random samples from previously seen batches (yielding a batch with a mix of
vectors sampled with and without replacement).

ngclearn.utils.data_utils.binarized_shuffled_omniglot(out_dir)
Specialized function for the omniglot dataset.

Note: this function has not been tested/fully integrated yet

ngclearn.utils.data_utils.generate_patch_set(imgs, patch_shape, batch_size, center_patch=True)
Generates a set of patches from an array/list of image arrays (via random sampling with replacement).

Parameters

• imgs – the array of image arrays to sample from

• patch_shape – a 2-tuple of the form (pH = patch height, pW = patch width)

• batch_size – how many patches to extract/generate from source images

• center_patch – centers each patch by subtracting the patch mean (per-patch)

Returns an array (D x (pH * pW)), where each row is a flattened patch sample

ngclearn.utils.io_utils module

Utility I/O functions.

ngclearn.utils.io_utils.deserialize(fname)
De-serializes a object from disk

Parameters fname – filename of object to load - /path/to/fname_of_model

Returns the deserialized model object

ngclearn.utils.io_utils.parse_simulation_info(sim_info)
Parses a simulation information dictionary into a human-readable string.

Parameters sim_info – simulation info dictionary

Returns a string presenting the simulation information

ngclearn.utils.io_utils.plot_img_grid(samples, fname, nx, ny, px, py, plt, rotNeg90=False)
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ngclearn.utils.io_utils.plot_sample_img(x_s, px, py, fname, plt, rotNeg90=False)
Plots a (1 x (px * py)) array as a (px x py) gray-scale image and saves this image to disk.

Parameters

• x_s – the numpy image array

• px – number of pixels in the row dimension

• py – number of pixels in the column dimension

• fname – the filename of the image to save to disk

• plt – a matplotlib plotter object

• rotNeg90 – rotates the image -90 degrees before saving to disk

ngclearn.utils.io_utils.serialize(fname, object)
Serializes an object to disk.

Parameters

• fname – filename of object to save - /path/to/fname_of_model

• model – model object to serialize

ngclearn.utils.metric_utils module

General mathematical measurement/metric functions/utilities file.

ngclearn.utils.metric_utils.bce(p, x, offset=1e-07)
Calculates the negative Bernoulli log likelihood or binary cross entropy (BCE).

Parameters

• p – predicted probabilities of shape (N x D)

• x – target binary values (data) of shape (N x D)

Returns an (N x 1) column vector, where each row is the BCE(p, x) for that row’s datapoint

ngclearn.utils.metric_utils.calc_ACC(T)
Calculates the average accuracy (ACC) given a task matrix T.

Parameters T – task matrix (containing accuracy values)

Returns scalar ACC for T

ngclearn.utils.metric_utils.calc_BWT(T)
Calculates the backward(s) transfer (BWT) given a task matrix T

Parameters T – task matrix (containing accuracy values)

Returns scalar BWT for T

ngclearn.utils.metric_utils.cat_nll(p, x, epsilon=1e-07)
Measures the negative Categorical log likelihood

Parameters

• p – predicted probabilities

• x – true one-hot encoded targets

Returns an (N x 1) column vector, where each row is the Cat.NLL(x_pred, x_true) for that row’s
datapoint
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ngclearn.utils.metric_utils.fast_log_loss(probs, y_ind)
Calculates negative Categorical log likelihood / cross entropy via a fast indexing approach (assumes targets/labels
are integers or class indices for single-class one-hot encoding).

Parameters

• probs – predicted label probability distributions (one row per label)

• y_ind – label indices - can be either (D,) vector or (Dx1) column vector

Returns the scalar value of Cat.NLL(x_pred, x_true)

ngclearn.utils.metric_utils.mse(mu, x)
Measures mean squared error (MSE), or the negative Gaussian log likelihood with variance of 1.0.

Parameters

• mu – predicted values (mean)

• x – target values (x/data)

Returns an (N x 1) column vector, where each row is the MSE(x_pred, x_true) for that row’s dat-
apoint

ngclearn.utils.stat_utils module

Statistical functions/utilities file.

ngclearn.utils.stat_utils.ainv(A)
Computes the inverse of matrix A

Parameters A – matrix to invert

Returns the inversion of A

ngclearn.utils.stat_utils.calc_covariance(X, mu_=None, weights=None, bias=True)
Calculate the covariance matrix of X

Parameters

• X – an (N x D) data design matrix to measure log density over (1 row vector - 1 data
point)

• mu – a pre-computed (1 x D) vector mean of the Gaussian distribution (Default = None)

• weights – a (N x 1) weighting column vector, one row is weight applied to one sample
in X (Default = None)

• bias – (only applies if weights is None), if True, compute the biased estimator of co-
variance

Returns a (D x D) covariance matrix

ngclearn.utils.stat_utils.calc_gKL(mu_p, sigma_p, mu_q, sigma_q)
Calculate the Gaussian Kullback-Leibler (KL) divergence between two multivariate Gaussian distributions, i.e.,
KL(p||q).

Parameters

• mu_p – (1 x D) vector mean of distribution p

• sigma_p – (D x D) covariance matrix of distributon p

• mu_q – (1 x D) vector mean of distribution q

• sigma_q – (D x D) covariance matrix of distributon q
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Returns the scalar KL divergence

ngclearn.utils.stat_utils.calc_list_moments(data_list, num_dec=3)
Compute the mean and standard deviation from a list of data values. This is for simple scalar measure-
ments/metrics that will be printed to I/O.

Parameters

• data_list – list of data values, each element should be (1 x 1)

• num_dec – number of decimal points to round values to (Default = 3)

Returns (mu, sigma), where mu = mean and sigma = standard deviation

ngclearn.utils.stat_utils.calc_log_gauss_pdf(X, mu, cov)
Calculates the log Gaussian probability density function (PDF)

Parameters

• X – an (N x D) data design matrix to measure log density over

• mu – the (1 x D) vector mean of the Gaussian distribution

• cov – the (D x D) covariance matrix of the Gaussian distribution

Returns a (N x 1) column vector w/ each row containing log density value per sample

ngclearn.utils.stat_utils.convert_to_spikes(x_data, gain=1.0, offset=0.0, n_trials=1)

ngclearn.utils.stat_utils.sample_bernoulli(p)
Samples a multivariate Bernoulli distribution

Parameters p – probabilities to samples of shape (n_s x D)

Returns an (n_s x D) (binary) matrix of Bernoulli samples (one vector sample per row)

ngclearn.utils.stat_utils.sample_gaussian(n_s, mu=0.0, sig=1.0, n_dim=- 1)
Samples a multivariate Gaussian assuming a diagonal covariance or scalar variance (shared across dimensions)
in the form of a standard deviation vector/scalar.

Parameters

• n_s – number of samples to draw

• mu – (1 x D) mean of the Gaussian distribution

• sig – (1 x D) or (1 x 1) standard deviation of the Gaussian distribution

• n_dim – dimensionality of the sample space

Returns an (n_s x n_dim) matrix of uniform samples (one vector sample per row)

ngclearn.utils.stat_utils.sample_uniform(n_s, n_dim)

Samples a multivariate Uniform distribution
Parameters

• n_s – number of samples to draw

• n_dim – dimensionality of the sample space

Returns an (n_s x n_dim) matrix of uniform samples (one vector sample per row)
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ngclearn.utils.transform_utils module

A mathematical transformation utilities function file. This file contains activation functions and other relevant data
transformation tools/utilities.

ngclearn.utils.transform_utils.bernoulli(x)

ngclearn.utils.transform_utils.binarize(data, threshold=0.5)
Converts the vector data to its binary equivalent

Parameters

• data – the data to binarize (real-valued)

• threshold – the cut-off point for 0, i.e., if threshold = 0.5, then any number/value inside
of data < 0.5 is set to 0, otherwise, it is set to 1.0

Returns the binarized equivalent of “data”

ngclearn.utils.transform_utils.binary_flip(x_b)
Flips the bit values within binary vector x_b

Parameters x_b – the binary vector to flip

Returns the flipped binary vector form of x_b

ngclearn.utils.transform_utils.bkwta(x, K=10)
Binarized k-winners-take-all competitive activation function

ngclearn.utils.transform_utils.calc_modulatory_factor(W)

Calculate modulatory matrix W_M for W

Note: this is NOT fully tested/integrated yet

ngclearn.utils.transform_utils.calc_zca_whitening_matrix(X)
Calculates a ZCA whitening matrix via the Mahalanobis whitening method.

Note: this is NOT fully tested/integrated yet
Parameters X – a design matrix of shape (M x N), where rows -> features, columns -> observations

Returns the resultant (M x M) ZCA matrix

ngclearn.utils.transform_utils.clip_fx(x)

ngclearn.utils.transform_utils.convert_to_spikes_(x_data, max_spike_rate, dt, sp_div=4.0)
Converts a vector x_data to its approximate Poisson spike equivalent.

Note: this function is NOT fully tested/integrated yet.
Parameters

• max_spike_rate – firing rate (in Hertz)

• dt – integraton time constant (in milliseconds or ms)

• sp_div – to denominator to convert input data values to a firing frequency

Returns the binary spike vector form of x_data

ngclearn.utils.transform_utils.create_block_bin_matrix(shape, n_ones_per_row)

ngclearn.utils.transform_utils.create_competiion_matrix(z_dim, lat_type, beta_scale, alpha_scale,
n_group, band)

This function creates a particular matrix to simulate competition via self-excitatory and inhibitory synaptic sig-
nals.
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Parameters

• z_dim – dimensionality of neural group to apply competition to

• lat_type – type of competiton pattern. “lkwta” sets a column/group based form of
k-WTA style competition and “band” sets a matrix band-based form of competition.

• beta_scale – the strength of the cross-unit inhibiton

• alpha_scale – the strength of the self-excitation

• n_group – if lat_type is set to “lkwta”, then this ensures that only a certain number of
neurons are within a competitive group/column

Note z_dim should be divisible by n_group

• band – the band parameter (Note: not fully tested)

Returns a (z_dim x z_dim) competition matrix

ngclearn.utils.transform_utils.create_mask_matrix(n_col_m, nrow, ncol)

ngclearn.utils.transform_utils.d_elu(z, alpha=1.0)

ngclearn.utils.transform_utils.d_identity(x)

ngclearn.utils.transform_utils.d_ltanh(z)

ngclearn.utils.transform_utils.d_relu(x)

ngclearn.utils.transform_utils.d_relu6(x)

ngclearn.utils.transform_utils.d_sigmoid(x)

ngclearn.utils.transform_utils.d_softplus(x)

ngclearn.utils.transform_utils.d_tanh(x)

ngclearn.utils.transform_utils.decide_fun(fun_type)
A selector function that generates a physical activation function and its first-order (element-wise) derivative
funciton given a description fun_type. Note that some functions do not come with a proper derivative (and thus
set to the identity function derivative – see list below).

Currently supported functions (for given fun_type) include:
* “tanh” - hyperbolic tangent
* “ltanh” - LeCun-style hyperbolic tangent
* “sigmoid” - logistic link function
* “kwta” - K-winners-take-all
* “softmax” - the softmax function (derivative not generated)
* “identity” - the identity function
* “relu” - rectified linear unit
* “lrelu” - leaky rectified linear unit
* “softplus” - the softplus function
* “relu6” - the relu but upper bounded/capped at 6.0
* “elu” - exponential linear unit
* “erf” - the error function (derivative not generated)
* “binary_flip” - bit-flipping function (derivative not generated)
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* “bkwta” - binary K-winners-take-all (derivative not generated)
* “sign” - signum (derivative not generated)
* “clip_fx” - clipping function (derivative not generated)
* “heaviside” - Heaviside function (derivative not generated)
* “bernoulli” - the Bernoulli sampling function (derivative not generated)

Parameters fun_type – a string stating the name of activation function and its 1st elementwise
derivative to generate

Returns (fx, d_fx), where fx is the physical activation function and d_fx its derivative

ngclearn.utils.transform_utils.drop_out(input, rate=0.0, seed=69)
Custom drop-out function – returns output as well as binary mask

ngclearn.utils.transform_utils.elu(z, alpha=1.0)

ngclearn.utils.transform_utils.erf(x)

ngclearn.utils.transform_utils.filter(x_t, x_f, dt, a, filter_type='var_trace')
Applies a filter to data x_t.

Note: this function is NOT fully tested/integrated yet.
Parameters

• x_t –

• x_f –

• dt –

• a –

• filter_type – (Default = “var_trace”)

Returns the filtered vector form of x_t

ngclearn.utils.transform_utils.global_contrast_normalization(Xin, s, lmda, epsilon)

ngclearn.utils.transform_utils.gte(x, val=0.0)

ngclearn.utils.transform_utils.identity(z)

ngclearn.utils.transform_utils.init_weights(kernel, shape, seed)
Randomly generates/initializes a matrix/vector according to a kernel pattern.

Currently supported/tested patterns include:
* “he_uniform”
* “he_normal”
* “classic_glorot”
* “glorot_normal”
* “glorot_uniform”
* “orthogonal”
* “truncated_gaussian” (alternative: “truncated_normal”)
* “gaussian” (alternative: “normal”)
* “uniform”
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Parameters

• kernel – a tuple denoting the pattern by which a matrix is initialized Note that the first
item of kernel MUST contain a string specifying the initlialization pattern/scheme to use.
Other elements, for tuples of length > 1 can contain pattern-specific hyper-paramters.

• shape – a 2-tuple specifying (N x M), a matrix of N rows by M columns

• seed – value to control determinism in initializer

Returns an (N x M) matrix randomly initialized to a chosen scheme

ngclearn.utils.transform_utils.inverse_logistic(x, clip_bound=0.03)
Inverse logistic link - logit function

ngclearn.utils.transform_utils.inverse_tanh(x)
Inverse hyperbolic tangent

ngclearn.utils.transform_utils.kwta(x, K=50)
k-winners-take-all competitive activation function

ngclearn.utils.transform_utils.lrelu(x)

ngclearn.utils.transform_utils.ltanh(z)

ngclearn.utils.transform_utils.mellowmax(x, omega=1.0, axis=1)

ngclearn.utils.transform_utils.mish(x)

ngclearn.utils.transform_utils.normalize_by_norm(param, proj_mag=1.0, param_axis=0)

ngclearn.utils.transform_utils.normalize_image(image)
Maps image array first to [0, image.max() - image.min()] then to [0, 1]
Arg: image: the image numpy.ndarray

Returns image array mapped to [0, 1]

ngclearn.utils.transform_utils.relu(x)

ngclearn.utils.transform_utils.relu6(x)

ngclearn.utils.transform_utils.scale_feat(x, a=- 1.0, b=1.0)
Applies the min-max feature scaling function to input x.

Parameters

• a – the lower bound to scale x w/in

• b – the upper bound to scale x w/in

Returns the scaled version of x, w/ each value in range [a,b]

ngclearn.utils.transform_utils.sech(x)

ngclearn.utils.transform_utils.sech_sqr(x)

ngclearn.utils.transform_utils.shrink(a, b)

ngclearn.utils.transform_utils.sigmoid(x)

ngclearn.utils.transform_utils.sign(x)
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ngclearn.utils.transform_utils.softmax(x, tau=0.0)
Softmax function with overflow control built in directly. Contains optional temperature parameter to control
sharpness (tau > 1 softens probs, < 1 sharpens –> 0 yields point-mass)

Parameters

• x – a (N x D) input argument (pre-activity) to the softmax operator

• tau – probability sharpening/softening factor

Returns a (N x D) probability distribution output block

ngclearn.utils.transform_utils.softplus(x)

ngclearn.utils.transform_utils.tanh(x)

ngclearn.utils.transform_utils.threshold_cauchy(x, lmda)

ngclearn.utils.transform_utils.threshold_soft(x, lmda)

ngclearn.utils.transform_utils.to_one_hot(idx, depth)
Converts an integer or integer array into a binary one-hot encoding.

Parameters

• idx – an integer or integer list representing the index/indices of the chosen cate-
gory/categories

• depth – total number of actual categories (the dimension K of the encoding)

Returns a binary one-of-K encoding of the input idx (an N x K vector if len(idx) = N)

ngclearn.utils.transform_utils.whiten(X)
Whitens image X via ZCA whitening

Note: this is NOT fully tested/integrated yet

Module contents

23.1.2 Module contents
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The following is a list of current papers that use ngc-learn (this list will be actively updated as we discover others that
use ngc-learn):

1. Ororbia, A., and Kifer, D. The neural coding framework for learning generative models. Nature Communications
13, 2064 (2022).

2. Ororbia, A., and Mali, A. Backprop-free reinforcement learning with active neural generative coding. Proceed-
ings of the aaai conference on artificial intelligence (2022).

3. Ororbia, A. “Spiking neural predictive coding for continual learning from data streams.” arXiv preprint
arXiv:1908.08655 (2019).

4. Ororbia, A, and Kelly, M. Alex. “CogNGen: Constructing the Kernel of a Hyperdimensional Predictive Pro-
cessing Cognitive Architecture.” arXiv preprint arXiv:2204.00619 (2022).
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• genindex

• modindex

• search
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